ATLAS OF BUTTERFLIES
AND DIURNAL MOTHS
IN THE MONSOON TROPICS
OF NORTHERN AUSTRALIA
Contents

Contributors .. vii
Acknowledgements ... ix
Abbreviations .. xi
Figures .. xiii
Maps .. xv
Plates ... xvii
Tables ... xxv
Foreword .. xxvii
Preface ... xxix
1. Introduction .. 1
2. Methods ... 17
3. Results and discussion .. 29
4. Conclusion .. 47
5. Swallowtails (Papilionidae) 49
6. Skippers (Hesperiidae) .. 65
7. Whites and yellows (Pieridae) 127
8. Nymphs (Nymphalidae) .. 167
9. Blues (Lycaenidae) .. 235
10. Day-flying moths (Sesiidae, Castniidae, Zygaenidae, Immidae, Geometridae, Uranidae, Erebidae and Noctuidae) ... 327
Addendum .. 389
Appendix I: List of larval food plants 391
Appendix II: Conservation status evaluation for taxa with small geographic range sizes 403
Bibliography ... 407
Index .. 425
Contributors

Associate Professor Michael Braby is an Honorary Associate Professor in the Division of Ecology and Evolution at The Australian National University and a Visiting Scientist at the Australian National Insect Collection. He is recognised internationally for his research on the biodiversity of butterflies—particularly their taxonomy, systematics, biogeography, conservation biology and ecology—and has published four books, 120 scientific research papers and numerous popular articles. His research aims to better understand and document the composition, biogeographic patterns and evolutionary history of butterflies and the underlying processes shaping their assembly on the Australian continent, as well as management actions needed for their conservation. Michael has lived and worked in the Australian Monsoon Tropics for 15 years, having completed a PhD at James Cook University at Townsville (1989–93) before working for the Northern Territory Government in Darwin (2005–14), where he designed and managed a relational database of invertebrates, including butterflies and diurnal moths, the records of which form the basis of this atlas. He also spent two years at Harvard University as a Fulbright Fellow (1999–2001). In 2001, Michael was awarded the Whitley Medal for the best book on the natural history of Australian animals, *Butterflies of Australia: Their identification, biology and distribution*.

Dr Donald Franklin is an ecologist and natural historian who has lived and worked in the Australian Monsoon Tropics for more than two decades, being based in Darwin for much of that time, but now living in far north Queensland. His diverse research interests include plants, birds and butterflies, with perspectives including species ecology and conservation biology, interactions between plants and fauna, phenology in seasonal and arid environments and community ecology. Eucalypts—the trees that dominate so many Australian forests and woodlands—are a special interest and he is currently working on a regional field guide to them. Don is the author of two books, 11 book chapters, 108 peer-reviewed papers and numerous technical reports and popular science articles. In his spare time during the past 13 years, he has been conducting butterfly surveys, cultivating a garden for butterflies, conducting surveys of eucalypts and photographing plants, butterflies and landscapes.

Deborah Bisa lived in the Northern Territory for 22 years and during that time developed strong connections to the local environment and culture through her study, work, volunteering efforts and publishing achievements. Between 2012 and 2017, she was the collections and facility manager at the Northern Territory Herbarium. She was editor and publication coordinator for Nic Smith’s *Weeds of the Wet/Dry Tropics of Australia: A field guide* (2002), co-author with Don Franklin of the ‘Field Key to the Lycaenid Butterflies of the Top End and Kimberley’ (2008) and in 2016 she published five years of historical research, *Remember Me Kindly: A history of the Holtze family in the Northern Territory*. She spent five years working in the remote Arnhem Land coastal community of Maningrida (2005–10). In 2001, Deb pioneered the development of a relational database (c. 7,900 records) for capturing records from butterfly surveys in the Top End, undertaken in conjunction with Don Franklin and a small group of enthusiastic ‘butterfliers’;
these records form a key component of this atlas. Some of Deb’s Northern Territory on-country experiences and notable findings were published in the *Northern Territory Naturalist* in 2013.

Dr Matthew Williams is a Senior Research Scientist at the Department of Biodiversity, Conservation and Attractions in Western Australia. He has studied the biology, ecology and taxonomy of Western Australia’s butterflies and day-flying moths for more than 30 years, is actively involved in their conservation and has undertaken several major field expeditions in the Kimberley. His research aims to better understand the biogeography of Australia’s butterfly fauna, particularly the processes that have shaped their distribution—both past and present. This work has important implications for preserving Australia’s unique butterflies within the modern landscape of fragmented patches of native vegetation. Matthew is also the department’s biometrician and in this role oversees the design and analytical robustness of all conservation research publications. Since 2010, he has coordinated and led the graceful sun-moth research program in south-western Western Australia, coordinating the skills of many enthusiastic nature-minded volunteers. Matthew’s analytical expertise, coupled with firsthand experience of the Kimberley and western Northern Territory Lepidoptera fauna, makes him a key contributor to this atlas.

Andrew Williams grew up in Kenya, where he was introduced to wildlife by his father, John G. Williams, ornithologist at the Coryndon Museum in Nairobi. Andrew became interested in butterflies largely because of his father’s passion for Lepidoptera. In his early career, Andrew conducted many faunal surveys in Africa for the Los Angeles County Museum of Natural History, the Smithsonian Institution in Washington, DC, and the Royal Ontario Museum in Canada. In 1969, Andrew joined the Western Foundation of Vertebrate Zoology in California, working primarily in Central America. In 1979, he immigrated to Australia to work for the West Australian Department of Fisheries and Wildlife (now the Department of Biodiversity, Conservation and Attractions), working in nature conservation for 37 years. Andrew conducted three major Lepidoptera field expeditions to the Kimberley; his data are an integral part of this atlas. Andrew has co-authored field guides on American and European orchids and written numerous research papers and wildlife articles. On retirement, Andrew became a departmental Research Associate. He is based at the Western Australia Wildlife Research Centre, where he works on threatened sun-moths and butterflies. His most recent co-authored paper on the sun-moths of Western Australia was published in *Records of the Western Australian Museum* in 2016.

Dr Carly Bishop is a landscape ecologist with a focus on the application of landscape ecology concepts to environmental management issues under state and Commonwealth legislation. Her research interests include conservation of mammals, butterflies and day-flying moths, particularly ensuring that scientific knowledge is incorporated into conservation policy and management.

Rebecca Coppen is an ecologist with expertise in invertebrate zoology and conducting botanical and Lepidoptera field surveys. Her research interests include the conservation of wetlands, their associated flora and fauna, particularly invertebrates, and the conservation of threatened butterflies and day-flying moths.
The Northern Territory Department of Land Resource Management supplied the primary source of data analysed for this project. We are grateful to Alaric Fisher for providing access to these data. Damian Milne is especially thanked for building the relational MS Access invertebrate database, providing substantial expertise with data input and resolving numerous queries with data cleaning and curation. Yusuke Fukuda also helped with the initial development of the invertebrate database for the Northern Territory on which this atlas is based. We thank Sheryl Keates for extracting, georeferencing and databasing a substantial number of records from the scientific literature.

We are most grateful to the following people, who generously provided data records, assisted with fieldwork or clarified certain facts: Lynette Aitchison, Stacey Anderson, Jared Archibald, Glenn Bellis, Darryl Binns, Caroline Camilleri, Ashley Carlson, Neil Collier, Fabian Douglas, Kelvyn Dunn, Rod Eastwood, Ted Edwards, Matt Gillis, Phil Gilmour, Steven Gregg, Bertus Hanekom, Mark Heath, Ben Hoffmann, Peter Holbery, Andrea Hope, the late Lindsay Hunt, Sheryl and Arthur Keates, Vince Kessner, Michael Kessner, John and Anne Koeyers, David Liddle, Amanda Lilleyman, Kim McLachlan, Max Mace, Zig Madycki, Geoff Martin, Cliff Meyer, Bruce Michael, Ian Morris, Scott Morrison, Craig Nieminski, Kenji Nishida, Simon Normand, George Paras, John Peters, Frank Pierce, Robert Powell, Tissa Ratnayeke, Brian and Lynn Reid, Heather Ryan, Chris Sanderson, Ben Stuckey, George Swann, David Webb, Richard Willan, Eleanor Williams, David Wilson, Lyndsay Wilson, Phil Wise, Alison Worsnop, Andy Young and Stuart Young.

Gavin Dally helped enormously with access to the entomology collection in the Museum and Art Gallery of the Northern Territory (Darwin), as well as the provision of data held in that collection. Haidee Brown and Brian Thistleton similarly assisted with access to the entomology collection and provision of data held in their care at the Northern Territory Economic Insect Collection (Berrimah). Andras Szito (Western Australia Department of Agriculture, Perth), David Britton (Australian Museum, Sydney), Ted Edwards (Australian National Insect Collection, Canberra) and Catriona McPhee (Museum Victoria, Melbourne) kindly assisted with access to museum collections under their care. Alan Andersen and Ben Hoffmann provided considerable expertise with identification of ants, made available their substantial reference collection at the Tropical Ecosystems Research Centre (Commonwealth Scientific and Industrial Research Organisation, Darwin) for study and generously provided spatial data of ants for inclusion in this atlas. Special thanks go to Kym Brennan, Ian Cowie, Sarah Hirst, Peter Latz, John Westaway and Glenn Wightman for identifying numerous larval food plants and for answering many botanical queries; John Westaway also provided considerable assistance with information on the life forms and reproductive strategies of larval food plants. We are most grateful to John Woinarski for preparing the foreword and reviewing the text for the entire manuscript, and to Jan Borrie for meticulously copyediting the text. Ted Edwards and Axel Kallies are also thanked for checking over some sections of the text and for assistance with literature. Keith Willmott, Don Sands and an anonymous reviewer also provided helpful comments and constructive advice.
Most of the images of live butterflies and diurnal moths were taken by the authors. However, we are particularly grateful to the following people who provided superb images for inclusion in this book: Richard Allen (*Catopsilia pyranthe*), Justin Armstrong (*Radinocera* sp. ‘Sandstone’), Roger Farrow (*Tirumala hamata*), Mark Golding (*Catopyrops florinda*, *Freyeria putli*), Stephanie Haygarth (*Catopsilia pyranthe*), Andrea Hope (*Euploea corinna*), Axel Kallies (*Pseudosesia obernithi*), Rod Kennett (*Agarista agricola*), Frank Pierce (*Borbo cinnara*, *Euploea climena*, *Eurema brigitta*, *Hypolimnas anomala*, *Neohesperilla croea*, *Neohesperilla xanthomera*, *Ocybadistes hypomeloma*, *Papilio aegeus*, *Parnara amalia*), Tissa Ratnayeke (*Arhopala micale*, *Danaus affinis*, *Danaus petilia*, *Liphyra brassolis*, *Ocybadistes walkerii*), Ian Morris (*Chaetocneme denitza*, *Ctimene* sp. ‘Top End’, *Euchromia creusa*, *Protographium leosthenes*), Kenji Nishida (*Hesperilla sexguttata*), Eleanor Williams (*Danaus plexippus*) and Alison Worsnop (*Liphyra brassolis*).

We are grateful to ANU Press for providing a subsidy to assist towards the copyediting and indexing costs for this publication.

Finally, this work would not have been possible without generous financial support from the Australian Biological Resources Study BushBlitz Applied Taxonomic Grants scheme through the Director of National Parks (grant number ATC214-09).
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>introduced larval food plant</td>
</tr>
<tr>
<td>ACT</td>
<td>Australian Capital Territory</td>
</tr>
<tr>
<td>AM</td>
<td>Australian Museum, Sydney</td>
</tr>
<tr>
<td>AMT</td>
<td>Australian Monsoon Tropics</td>
</tr>
<tr>
<td>ANIC</td>
<td>Australian National Insect Collection, Canberra</td>
</tr>
<tr>
<td>AOO</td>
<td>area of occupancy</td>
</tr>
<tr>
<td>BMNH</td>
<td>Natural History Museum, London</td>
</tr>
<tr>
<td>CRC</td>
<td>Cooperative Research Centre</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>DD</td>
<td>Data Deficient</td>
</tr>
<tr>
<td>EOO</td>
<td>extent of occurrence</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>IBRA</td>
<td>Interim Biogeographic Regionalisation for Australia</td>
</tr>
<tr>
<td>IPA</td>
<td>Indigenous Protected Area</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LC</td>
<td>Least Concern</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NGO</td>
<td>non-governmental organisation</td>
</tr>
<tr>
<td>NMV</td>
<td>Museum Victoria, Melbourne</td>
</tr>
<tr>
<td>NRS</td>
<td>National Reserve System</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>NTEIC</td>
<td>Northern Territory Economic Insect Collection, Berrimah</td>
</tr>
<tr>
<td>NTM</td>
<td>Museum and Art Gallery of the Northern Territory, Darwin</td>
</tr>
<tr>
<td>Qld</td>
<td>Queensland</td>
</tr>
<tr>
<td>SAM</td>
<td>South Australian Museum, Adelaide</td>
</tr>
<tr>
<td>TERC</td>
<td>Tropical Ecosystems Research Centre, CSIRO, Berrimah</td>
</tr>
<tr>
<td>TPWCA</td>
<td>Territory Parks and Wildlife Conservation Act</td>
</tr>
<tr>
<td>Vic</td>
<td>Victoria</td>
</tr>
<tr>
<td>VU</td>
<td>Vulnerable</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>WADA</td>
<td>Western Australia Department of Agriculture collection, Perth</td>
</tr>
</tbody>
</table>
Photo: Neohesperilla xiphihora, M. P. Brady
Figures

Figure 1 Structure and relations of the database used to manage species records 18

Figure 2 Seasonal variation in the number of temporal records (unique sampling dates) within the study region (n = 4,603) .. 24

Figure 3 A species accumulation curve fitted to the number of new taxa discovered since 1970 ... 31

Figure 4 Temporal distribution of species richness in the study region 41

Figure 5 Seasonal variation in adult abundance of butterflies and diurnal moths in the study region, showing examples of species peaking at different times of the year 43
Maps

Map 1 Location of the study region in northern Australia ... 6
Map 2 Map of the study region showing spatial variation in average annual precipitation 6
Map 3 Map of the study region showing the extent and land tenure of the National Reserve System ... 11
Map 4 Geographical distribution of spatial records (unique sampling sites) within the study region (n = 4,352) .. 18
Map 5 Seasonal rainfall zones of northern Australia ... 21
Map 6 Example of the method used to estimate geographic range: Delias argenthona, a species with a continuous distribution, as inferred from distribution records and larval food plant data .. 21
Map 7 Example of the method used to estimate geographic range: Taractrocera ilia, a narrow-range endemic restricted to the Arnhem Land Plateau .. 21
Map 8 Example of the method used to estimate geographic range: Delias aestiva, a species normally restricted to coastal habitats (mangrove), but with two inland non-breeding records (vagrants) .. 21
Map 9 Geographic ranges of butterflies and diurnal moths in the study region, showing examples of species .. 36
Map 10 Geographic ranges of butterflies and diurnal moths in the study region, showing examples of species .. 37
Photo: Nesolycaena caesia, M. F. Braby
Plates

Plate 1 Examples of breeding habitats used by butterflies and diurnal moths in the study region ... 9
Plate 2 Examples of breeding habitats used by butterflies and diurnal moths in the study region .. 10
Plate 3 Protographium leosthenes, Kakadu National Park, NT 50
Plate 4 Protographium leosthenes, Kakadu National Park, NT 50
Plate 5 Graphium eurypylus, Wanguri, Darwin, NT 52
Plate 6 Papilio anactus, Mt Piper, Broadford, Vic 54
Plate 7 Papilio aegeus, Mallacoota, Vic .. 56
Plate 8 Papilio aegeus, Crystal Cascades, Qld .. 56
Plate 9 Papilio fuscus, Lee Point, Darwin, NT .. 58
Plate 10 Papilio fuscus, Wanguri, Darwin, NT ... 58
Plate 11 Papilio demoleus, Cardwell, Qld .. 60
Plate 12 Papilio demoleus, Cardwell, Qld .. 60
Plate 13 Cressida cressida, Irvinebank, Qld .. 62
Plate 14 Badamia exclamationis, Near Borroloola, NT 66
Plate 15 Hasora hurama, Adelaide River crossing, Arnhem Highway, NT 68
Plate 16 Hasora chromus, Wanguri, Darwin, NT 70
Plate 17 Chaetocneme denitza, Elcho Island, NT 72
Plate 18 Chaetocneme denitza, Palmerston, NT .. 72
Plate 19 Neohesperilla senta, Cardwell, Qld ... 74
Plate 20 Neohesperilla xiphiphora, Mt Burrell, NT 76
Plate 21 Neohesperilla xiphiphora, Mt Burrell, NT 76
Plate 22 Neohesperilla crocea, Endeavour Falls Tourist Park, Qld 78
Plate 23 Neohesperilla xanthomera, Mt Burrell, NT 80
Plate 24 Hesperilla crypsigramma, Mt Burrell, NT 82
Plate 25 Hesperilla sexguttata, Kakadu National Park, NT 84
Plate 26 Proeidosa polysema, Curtin Springs, NT 86
Plate 27	Mesodina gracillima, Marrakai Road, NT	88
Plate 28	Mesodina gracillima, Marrakai Road, NT	88
Plate 29	Parnara amalia, Lake Mitchell, north of Mareeba, Qld	90
Plate 30	Parnara amalia, Lake Mitchell, north of Mareeba, Qld	90
Plate 31	Borbo cinnara, Christmas Island, WA	92
Plate 32	Borbo cinnara, Christmas Island, WA	92
Plate 33	Borbo impar, Wanguri, Darwin, NT	94
Plate 34	Borbo impar, Fogg Dam, NT	94
Plate 35	Pelopidas lyelli, Atherton, Qld	96
Plate 36	Taractrocera anisomorpha, Standley Chasm, West MacDonnell Ranges, NT	98
Plate 37	Taractrocera ina, Dundee Beach, NT	100
Plate 38	Taractrocera dolon, Mt Burrell, NT	102
Plate 39	Taractrocera ilia, Kakadu National Park, NT	104
Plate 40	Taractrocera ilia, Kakadu National Park, NT	104
Plate 41	Taractrocera psammopetra, Spirit Hills, Keep River National Park, NT	106
Plate 42	Taractrocera psammopetra, Spirit Hills, Keep River National Park, NT	106
Plate 43	Ocybadistes flavovittatus, Mornington Wildlife Sanctuary, WA	108
Plate 44	Ocybadistes flavovittatus, Mornington Wildlife Sanctuary, WA	108
Plate 45	Ocybadistes walkeri, Holmes Jungle, NT	110
Plate 46	Ocybadistes hypomeloma, West of Paluma, Qld	112
Plate 47	Suniana sunias, Mary River Reserve, NT	114
Plate 48	Suniana sunias, Marrakai Road, NT	114
Plate 49	Suniana lascivia, Wanguri, Darwin, NT	116
Plate 50	Telicota colon, Adelaide River crossing, Arnhem Highway, NT	118
Plate 51	Telicota augias, Dundee Beach, NT	120
Plate 52	Telicota augias, Dundee Beach, NT	120
Plate 53	Cephrenes augiades, Brisbane, Qld	122
Plate 54	Cephrenes trichopepla, Holmes Jungle, Darwin, NT	124
Plate 55	Cephrenes trichopepla, El Questro Wilderness Park, WA	124
Plate 56	Catopsilia pyranthe, Canberra, ACT	128
Plate 57	Catopsilia pyranthe, Canberra, ACT	128
Plate 58	Catopsilia pomona, Herberton, Qld	130
Plate 59	Catopsilia scylla, Wanguri, Darwin, NT	132
Plate 60	Eurema brigitta, Big Mitchell Creek, Qld	134
Plate 61	Eurema laeta, Herbert Lagoon, NT	136
Plate 62	Eurema herla, Wongalara Wildlife Sanctuary, NT	138
Plate 63 *Eurema smilax*, Yenda, NSW .. 140
Plate 64 *Eurema alitha*, Fish River Station, NT 142
Plate 65 *Eurema hecabe*, Wanguri, Darwin, NT 144
Plate 66 *Leptosia nina*, South of Kalumburu, WA 146
Plate 67 *Elodina padusa*, Boodjamulla (Lawn Hill) National Park, Qld 148
Plate 68 *Elodina padusa*, Boodjamulla (Lawn Hill) National Park, Qld 148
Plate 69 *Elodina walkeri*, Buffalo Creek, Leanyer Swamp, NT 150
Plate 70 *Appias albina*, Black Point, Cobourg Peninsula, NT 152
Plate 71 *Appias paulina*, East Point, Darwin, NT 154
Plate 72 *Appias paulina*, Lakefield National Park, Cape York Peninsula, Qld 154
Plate 73 *Belenois java*, Alice Springs, NT .. 156
Plate 74 *Cepora perimale*, Shoal Bay, NT .. 158
Plate 75 *Delias aestival*, Buffalo Creek, Leanyer Swamp, NT 160
Plate 76 *Delias myasis*, Paluma, Qld .. 162
Plate 77 *Delias argenthona*, Mt Burrell, NT 164
Plate 78 *Libythea geoffroyi*, Emma Gorge, El Questro Wilderness Park, WA 168
Plate 79 *Libythea geoffroyi*, Limestone Gorge, Judbarra/Gregory National Park, NT 168
Plate 80 *Tirumala hamata*, Daintree, Qld ... 172
Plate 81 *Tirumala hamata*, Fogg Dam, NT .. 172
Plate 82 *Danaus chrysippus*, Wanguri, Darwin, NT 174
Plate 83 *Danaus chrysippus*, Wanguri, Darwin, NT 174
Plate 84 *Danaus petilia*, Holmes Jungle, Darwin, NT 176
Plate 85 *Danaus petilia*, Katherine, NT ... 176
Plate 86 *Danaus genutia*, Elsey National Park, Mataranka, NT 178
Plate 87 *Danaus genutia*, Elsey National Park, Mataranka, NT 178
Plate 88 *Danaus affinis*, Holmes Jungle, Darwin, NT 180
Plate 89 *Danaus affinis*, Buffalo Creek, Leanyer Swamp, NT 180
Plate 90 *Danaus plexippus* ... 182
Plate 91 *Euploea sylvester*, Maningrida, NT 184
Plate 92 *Euploea darchia*, Beatrice Hill, NT 186
Plate 93 *Euploea corinna*, Palmerston, NT ... 188
Plate 94 *Euploea alcathoe*, Gapuwiyak, Gove Peninsula, NT 190
Plate 95 *Euploea climena*, Christmas Island, WA 192
Plate 96 *Cethosia penthesilea*, Fish River Station, NT 194
Plate 97 *Acraea andromacha*, Wongalara Wildlife Sanctuary, NT 196
Plate 98 *Acraea terpsicore*, Wagait Beach, Cox Peninsula, NT 198
Plate 99 *Acraea terpsicore*, Wagait Beach, Cox Peninsula, NT .. 198
Plate 100 *Phalanta phalantha*, Manton Dam, NT .. 200
Plate 101 *Phalanta phalantha*, Fish River Station, NT ... 200
Plate 102 *Vanessa kershawi*, Ocean Grove, Vic .. 202
Plate 103 *Vanessa itea*, Brindabella Range, ACT .. 203
Plate 104 *Junonia orithya*, Kingfisher Camp, north of Lawn Hill, Qld 204
Plate 105 *Junonia orithya*, Mt Burrell, NT .. 204
Plate 106 *Junonia villida*, Kakadu National Park, NT ... 206
Plate 107 *Junonia villida*, Berry Springs, NT .. 206
Plate 108 *Junonia hedonia*, Wanguri, Darwin, NT .. 208
Plate 109 *Junonia hedonia*, Cardwell, Queensland .. 208
Plate 110 *Junonia erigone*, Rimbija Island, Wessell Islands, NT 210
Plate 111 *Yoma sabina*, Macassan Beach, Gove Peninsula, NT 212
Plate 112 *Hypolimnas alimena*, Mosquito Creek, Gove Peninsula, NT 214
Plate 113 *Hypolimnas alimena*, Mt Burrell, NT ... 214
Plate 114 *Hypolimnas bolina*, Wongalara Wildlife Sanctuary, NT 216
Plate 115 *Hypolimnas bolina*, Wanguri, Darwin, NT ... 216
Plate 116 *Hypolimnas misippus*, Mt Burrell, NT .. 218
Plate 117 *Hypolimnas misippus*, Fish River Station, NT 218
Plate 118 *Hypolimnas anomala*, Christmas Island, WA 220
Plate 119 *Hypolimnas anomala*, Christmas Island, WA 220
Plate 120 *Charaxes sempronius*, Fish River Station, NT 222
Plate 121 *Melanitis leda*, Connors Range, St Lawrence, Qld 224
Plate 122 *Mycalesis perseus*, Cardwell, Qld .. 226
Plate 123 *Mydosama sirius*, Baralminar River near Gapuwiyak, NT 228
Plate 124 *Hypocysta adiante*, Nhulunbuy, NT ... 230
Plate 125 *Ypthima arctous*, Murray Falls, Tully, Qld 232
Plate 126 *Ypthima arctous*, Murray Falls, Tully, Qld 232
Plate 127 *Liphyra brassolis*, Holmes Jungle, Darwin, NT 236
Plate 128 *Liphyra brassolis*, Humpty Doo, NT .. 236
Plate 129 *Acrodipsas myrmecophila*, Canberra, ACT ... 238
Plate 130 *Acrodipsas decima*, Mt Burrell, NT ... 240
Plate 131 *Acrodipsas decima*, Mt Burrell, NT ... 240
Plate 132 *Hypochrysops apelles*, Buffalo Creek, Leanyer Swamp, NT 242
Plate 133 *Hypochrysops ignitus*, Berry Springs, NT .. 244
Plate 134 *Arhopala eupolis*, Mary River, NT ... 246
Plate 135 *Arhopala micale*, Holmes Jungle, Darwin, NT 248
Plate 136 *Arhopala micale*, Kakadu National Park, NT 248
Plate 137 *Ogyris oroetes*, Calperum Station, SA 250
Plate 138 *Ogyris barnardi*, Burra Range, Qld 252
Plate 139 *Ogyris amaryllis*, South-west of Charters Towers, Qld 254
Plate 140 *Ogyris amaryllis*, South-west of Charters Towers, Qld 254
Plate 141 *Ogyris iphis*, Cobourg Peninsula, NT 256
Plate 142 *Ogyris iphis*, Cobourg Peninsula, NT 256
Plate 143 *Ogyris zosine*, Kakadu National Park, NT 260
Plate 144 *Jalmenus icilius*, Alice Springs, NT 262
Plate 145 *Hypolycaena phorbas*, Black Point, Cobourg Peninsula, NT 264
Plate 146 *Deudorix smilis*, Lee Point, Casuarina Coastal Reserve, NT 266
Plate 147 *Bindahara phocides*, Rollingstone, Qld 268
Plate 148 *Candalides margarita*, Wanguri, Darwin, NT 270
Plate 149 *Candalides geminus*, Kakadu National Park, NT 272
Plate 150 *Candalides geminus*, Kakadu National Park, NT 272
Plate 151 *Candalides erinus*, Kakadu National Park, NT 274
Plate 152 *Candalides erinus*, Kakadu National Park, NT 274
Plate 153 *Candalides delospila*, Judbarra/Gregory National Park, NT 276
Plate 154 *Nesolycaena urumelia*, Kakadu National Park, NT 278
Plate 155 *Nesolycaena caesia*, Kalumburu, WA 282
Plate 156 *Anthene lycaenoides*, Herberton, Qld 284
Plate 157 *Anthene seltuttus*, Beatrice Hill, NT 286
Plate 158 *Petrelaea tombugensis*, Carson River crossing, WA 288
Plate 159 *Petrelaea tombugensis*, Carson River crossing, WA 288
Plate 160 *Nacaduba kurava*, Marrakai Road, NT 290
Plate 161 *Nacaduba biocellata*, Nhulunbuy, NT 292
Plate 162 *Nacaduba biocellata*, Wongalara Wildlife Sanctuary, NT 292
Plate 163 *Prosotas dubiosa*, Gunn Point, NT 294
Plate 164 *Catopyrops florinda*, Kununurra, WA 296
Plate 165 *Catopyrops florinda*, Wanguri, Darwin, NT 296
Plate 166 *Sahulana scintillata*, Mary River Reserve, NT 298
Plate 167 *Theclinesthes sulpitius*, Near Palmerston, NT 300
Plate 168 *Theclinesthes miskini*, Mt Burrell, NT 302
Plate 169 *Theclinesthes alboinctus*, Wyperfeld National Park, Vic 304
Plate 170 *Jamides phaseli*, Cairns, Qld ... 306
Plate 171 Catochrysops panormus, Herberton, Qld 308
Plate 172 Lampides boeticus, Hervey Range, Qld 310
Plate 173 Zizeeria karsandra, Cobourg Peninsula, NT 312
Plate 174 Zizeeria karsandra, Cobourg Peninsula, NT 312
Plate 175 Zizina otis, Paluma, Qld ... 314
Plate 176 Famegana alsulus, Buntine Highway, NT 316
Plate 177 Zizula hylax, Kakadu National Park, NT 318
Plate 178 Everes lacturnus, Fish River Station, NT 320
Plate 179 Euchrysops cnejus, Berry Springs, NT 322
Plate 180 Freyeria putli, Kununurra, WA 324
Plate 181 Pseudosesia oberthuri, Lee Point, Casuarina Coastal Reserve, NT 328
Plate 182 Pseudosesia oberthuri, Lee Point, Casuarina Coastal Reserve, NT 328
Plate 183 Synemon phaeoptila, Cobourg Peninsula, NT 330
Plate 184 Synemon phaeoptila, Pinkerton Range, NT 330
Plate 185 Synemon sp. ‘Kimberley’, East of Borda Island, WA 332
Plate 186 Synemon sp. ‘Kimberley’, East of Borda Island, WA 332
Plate 187 Synemon wulwulam, Pine Creek, NT 334
Plate 188 Synemon wulwulam, Mt Burrell, NT 334
Plate 189 Synemon sp. ‘Roper River’, Nathan River, Limmen National Park, NT 336
Plate 190 Synemon sp. ‘Roper River’, Nathan River, Limmen National Park, NT 336
Plate 191 Pollanius sp. 7, Darwin, NT .. 338
Plate 192 Hestiochora xanthocoma, Wongalara Wildlife Sanctuary, NT 340
Plate 193 Birtohana cleis, Leanyer, Darwin, NT 342
Plate 194 Birtohana cleis, Leanyer, Darwin, NT 342
Plate 195 Ctimene sp. ‘Top End’, Mosquito Creek, Gove Peninsula, NT 344
Plate 196 Ctimene sp. ‘Top End’, Riyala, Elizabeth Valley, NT 344
Plate 197 Dysphania numana, Marrara, Darwin, NT 346
Plate 198 Alcides metaurus, Mackay, Qld 348
Plate 199 Euchromia creusa, Oenpelli, NT 350
Plate 200 Genus 1 sp. ‘Sandstone’, Kakadu National Park, NT 352
Plate 201 Leucogonia cosmopis, Dundee Beach, NT 354
Plate 202 Leucogonia cosmopis, Black Point, Cobourg Peninsula, NT 354
Plate 203 Ipanica cornigera, Black Point, Cobourg Peninsula, NT 356
Plate 204 Ipanica cornigera, Black Point, Cobourg Peninsula, NT 356
Plate 205 Periopta diversa, Leanyer, Darwin, NT 358
Plate 206 Periopta diversa, Leanyer, Darwin, NT 358
<table>
<thead>
<tr>
<th>Plate Number</th>
<th>Species/Description</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>Periopta ardescens, Timber Creek, NT</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>208</td>
<td>Periopta ardescens, Dundee Beach, NT</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>209</td>
<td>Radinocera vagata, Dundee Beach, NT</td>
<td></td>
<td>362</td>
</tr>
<tr>
<td>210</td>
<td>Radinocera vagata, Dundee Beach, NT</td>
<td></td>
<td>362</td>
</tr>
<tr>
<td>211</td>
<td>Radinocera sp. ‘Sandstone’, Kakadu National Park, NT</td>
<td></td>
<td>364</td>
</tr>
<tr>
<td>212</td>
<td>Radinocera sp. ‘Sandstone’, Kakadu National Park, NT</td>
<td></td>
<td>364</td>
</tr>
<tr>
<td>213</td>
<td>Idalima metasticta, Litchfield National Park, NT</td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>214</td>
<td>Idalima metasticta, Nhulunbuy, NT</td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>215</td>
<td>Idalima leonora, Cobourg Peninsula, NT</td>
<td></td>
<td>368</td>
</tr>
<tr>
<td>216</td>
<td>Idalima leonora, Cobourg Peninsula, NT</td>
<td></td>
<td>368</td>
</tr>
<tr>
<td>217</td>
<td>Idalima aethrias, Berry Springs, NT</td>
<td></td>
<td>370</td>
</tr>
<tr>
<td>218</td>
<td>Idalima aethrias, Mt Burrell, NT</td>
<td></td>
<td>370</td>
</tr>
<tr>
<td>219</td>
<td>Idalima sp. ‘Arnhem Land’, Kakadu National Park, NT</td>
<td></td>
<td>372</td>
</tr>
<tr>
<td>220</td>
<td>Hecatesia sp. ‘Arnhem Land’, Kakadu National Park, NT</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>221</td>
<td>Hecatesia sp. ‘Arnhem Land’, Kakadu National Park, NT</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>222</td>
<td>Hecatesia sp. ‘Amata’, Keep River National Park, NT</td>
<td></td>
<td>376</td>
</tr>
<tr>
<td>223</td>
<td>Hecatesia sp. ‘Amata’, Keep River National Park, NT</td>
<td></td>
<td>376</td>
</tr>
<tr>
<td>224</td>
<td>Mimeusemia centralis, Lee Point, Casuarina Coastal Reserve, NT</td>
<td></td>
<td>378</td>
</tr>
<tr>
<td>225</td>
<td>Mimeusemia econia, Coen, Qld</td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>226</td>
<td>Agarista agricola, Kakadu National Park, NT</td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>227</td>
<td>Agarista agricola, Mt Burrell, NT</td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>228</td>
<td>Cruria donowani, Mt Burrell, NT</td>
<td></td>
<td>382</td>
</tr>
<tr>
<td>229</td>
<td>Cruria darwiniensis, Howard Springs Nature Park, NT</td>
<td></td>
<td>384</td>
</tr>
<tr>
<td>230</td>
<td>Cruria darwiniensis, Howard Springs Nature Park, NT</td>
<td></td>
<td>384</td>
</tr>
<tr>
<td>231</td>
<td>Comocrus behri, Cocoparra National Park, NSW</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>232</td>
<td>Comocrus behri, Cocoparra National Park, NSW</td>
<td></td>
<td>386</td>
</tr>
</tbody>
</table>
Photo: Taractrocera dolon, M. F. Braby
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Descriptions of some of the critical fields used to capture species data, with an example provided to illustrate how data were coded for an individual species record</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Threshold criteria used to determine the inclusion of butterfly and diurnal moth distribution records in the continuous range polygon with intervening larval food plant records according to mean annual rainfall zones</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Correction factor used to estimate relative abundance for each month to account for seasonal variation in sampling effort (the number of temporal records)</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Records of ‘new’ species from the study region during the past four decades (since 1970)</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Taxa (species and subspecies, including undescribed taxa) endemic to the study region and their occurrence within the four major subregions</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>List of taxa that are vagrants and/or infrequent visitors.</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Summary of conservation status of taxa based on IUCN Red List categories and criteria.</td>
<td>45</td>
</tr>
</tbody>
</table>
The monsoon tropics region of northern Australia is one of the world’s few remaining vast natural landscapes. Much of it is still held as Indigenous estate, with traditional landowners applying management honed by an intricate knowledge of its nature acquired over countless generations. For most other Australians, it remains a poorly known frontier. Some see that frontier and naturalness as a backwardness, and seek instead the opportunity to engineer major development that will bend the land to commercial productivity. Whatever the future brings, it is important that decisions that are being made now and in the future are grounded in robust evidence. A critical component of that evidence concerns the significance of the natural values of the region, the way those values are embedded in and dependent on broader ecological processes and the extent to which those values may be subverted or compromised by changes in the way the land and waters are managed, used or transformed.

This book is an important piece of that evidence base, and it represents a major advance in knowledge of the nature of northern Australia. Intermittently over the past 200 or so years, collectors and scientists have skimmed the surface of the biology of Australia’s monsoon tropics. Over the past 40 to 50 years, more detailed studies have been done, and this research has revealed that the area is an important conservation stronghold, particularly but not only for native mammal groups that have been lost or declined extensively elsewhere in Australia. Many studies over this period have described in increasing detail the inventory and ecological fit of plants, mammals and birds in monsoonal northern Australia. Collectively, these studies show clearly that the region is distinctive ecologically and has areas of endemity that are significant at national and international levels. Over the past decade or so, there have also been novel landmark studies of less charismatic vertebrate groups—freshwater fish, frogs and reptiles—with the results of these studies showing a richness, endemity and evolutionary antiquity that far surpassed previous estimates. Scientists have worked their way beyond the constraints of the frontier and found much that is fascinating and important; we are beginning to understand how the country works, how much of what is in it is special and how its nature is remarkably long established. Of course, much of this knowledge, and recognition of value, has been long held by Indigenous people living in, and caring for, this country.

With, to date, two notable exceptions, invertebrates have been largely neglected in this biological journey beyond the frontier. Those exceptions are somewhat quixotic and their study has been driven by the dedication of a few specialist invertebrate biologists. Since the 1980s, a series of surveys, initially by Alan Solem and colleagues, has documented the quite extraordinary radiation, species richness and narrow endemity of land snails in the Australian Monsoon Tropics and particularly in the Kimberley—although much of this trove remains undiscovered. The ant fauna of monsoonal northern Australia is a much more conspicuous feature of these environments and self-evidently ecologically important. Studies by Alan Andersen and colleagues have also demonstrated a remarkably high richness for ant species, with local diversity among the richest in the world. These studies...
have also had major ecological underpinnings and have helped influence the environmental management of the region.

This book brings knowledge of a third major invertebrate group out of the shadows. Butterflies, and day-flying moths, would seem an obvious candidate for inventory and research. Surely, everybody loves butterflies. Most are readily observable, and their nuanced variations in colour, pattern, shape and behaviour represent a tractable but intriguing challenge for identification for many observers. But, as evident in the history of collection revealed in this book, their study in monsoonal northern Australia has long been limited and ephemeral. To aggregate these sparse fragments of previous information, and then to systematically seek to redress the deficiencies, is the quest described in this book. Michael Braby and co-authors have done a magnificent job in meeting this challenge. For the first time, the butterfly fauna (and, enmeshed with it, much of the day-flying moth fauna) is systematically catalogued, with painstaking care for precision and justification. This—the thorough and reliable documentation of what is there—is the grounding needed for any assessment of natural values.

But this book is much more than a checklist of butterfly (and diurnal moth) species. It places these species carefully within a biogeographical, ecological and conservation context. It describes, for every species, their phenology, likely movement patterns, diet and habitat relationships. It provides an atlas of known records and quantifies this distributional range. It illustrates and describes the species. It provides advice on management. It is an enticement and entrée for anyone with any passing interest in the wonderful world of butterflies in this country. For people across a broad spectrum, it will provide much knowledge on every relevant aspect, but also show that much remains to be discovered. Still, we live in a natural world with so much to discover.

The evolutionary and distributional patterns revealed here for butterflies are similar to but somewhat different from those recently revealed for other major taxonomic groups. Species richness tends to decline from higher rainfall to lower rainfall areas; some species have very extensive distributions across the broad arc of savannah woodland environments, whereas other species are far more narrowly confined, with some centres of endemism; and species vary markedly in their habitat associations. The ecological web in which butterflies live is more intimate than for many other taxonomic groups, with narrow host plant specificity (the plant species on which their larvae depend) for many butterfly species, and also remarkably intricate relationships of some butterfly species with particular ant species. Butterflies present archetypical examples of the life-giving links that connect different components of the environment. We cannot maintain butterflies in this system unless we also conserve those plants on which they depend. And, in many cases, the retention of those plants is dependent on appropriate fire regimes, the control of introduced pests and weeds, and appropriate constraints on habitat destruction or modification. This book provides a systematic and comprehensive body of evidence about values that we should respect and how these values should be managed.

The co-authors have invested decades of their lives in the research that underpins this book. Initially, those studies may have been disparate and anecdotal. However, as evident in this book, the research became orderly, directed, systematic and increasingly comprehensive. Increasingly, it had more strategic point and purpose. This book represents the culmination of that effort. It is a landmark achievement and a wonderful legacy for future generations of biologists, and indeed for anyone with an interest in nature in northern Australia and of the future of this country. Michael Braby and his co-authors know their study animals, they are passionate about them, they make that knowledge fascinating and hence this book allows its readers a remarkable opportunity and privilege to see and get a feel for this country from the perspectives of other lives.

— Professor John J. C. Z. Woinarski, Charles Darwin University
Northern Australia is a vast region that includes the Kimberley of northern Western Australia, the ‘Top End’ of the north of the Northern Territory, the ‘Gulf Country’ of central-eastern Northern Territory and western Queensland, and Cape York Peninsula of northern Queensland. Collectively, these areas make up the Australian Monsoon Tropics biome, a distinct geographical region renowned internationally for its large and relatively intact natural landscapes, high biodiversity and strong Indigenous culture. However, currently there is increasing pressure to exploit northern Australia’s natural wealth, particularly through expansion of the pastoral, agricultural/horticultural and mining industries, all of which will inevitably result in substantial habitat loss and modification and erosion of biodiversity values. In addition, there is a multitude of other threats, including invasive species, inappropriate fire regimes, pastoral intensification and, of course, climate change. Hence, there is an urgent need to identify the region’s biological assets, to inform policy and management agencies and to set priorities for biodiversity conservation.

This atlas deals specifically with the western portion of the Australian Monsoon Tropics—that is, the region west of the Gulf of Carpentaria (Kimberley, Top End, Northern Deserts and western Gulf Country). The main purpose is to compile a comprehensive inventory of the butterflies and diurnal moths (Insecta: Lepidoptera) of this region of northern Australia. In particular, we aim to answer the following questions regarding the entire fauna within the study region:

1. How many species occur in the region?
2. What kinds of species occur in the region?
3. What proportion of, and which, species are restricted to the region?
4. What is their geographical/breeding range?
5. What are their ecological requirements according to larval food plant specificity and habitat preferences?
6. What is the breeding status of those species?
7. When are they most abundant as adults, do they breed continuously or seasonally and what strategies have they evolved to cope with the adversity of the dry season?
8. What is their conservation status, and how well are they represented in the conservation reserve system?

Answers to such basic questions concerning the composition, distribution and abundance of the fauna are critical because they provide the baseline against which the extent and direction of change can be assessed in future.

Our dataset—comprising 23,885 records based on field observations (55 per cent), museum specimens (34 per cent) and literature (11 per cent)—represents 4,352 sites and spans more than 110 years of recording effort. These data indicate that 166 taxa representing 163 species (132 butterflies and 31 diurnal moths) have been recorded from the study region. The Top End appears to be substantially more diverse than the other subregions, with 150 species (122 butterflies and 28 diurnal moths, or 93 per cent of the total fauna) compared with 105 species (88 butterflies and 17 diurnal moths, or 63 per cent) from the
Kimberley, 82 species (74 butterflies and eight diurnal moths, or 51 per cent) from the western Gulf Country and 53 species (45 butterflies and eight diurnal moths, or 53 per cent) from the Northern Deserts (less than 700 mm mean annual rainfall). Surprisingly, a substantial number of species (37, or 23 per cent) recorded from the study region—including several that are yet to be scientifically described—have been detected only during the past four decades, highlighting that northern Australia is still a frontier for biodiversity discovery.

The fauna comprises seven (4 per cent) taxa of Papilionidae, 31 (19 per cent) Hesperiidae, 20 (12 per cent) Pieridae, 33 (20 per cent) Nymphalidae, 43 (26 per cent) Lycaenidae and 32 (19 per cent) diurnal moths representing eight different families. Thus, the lycaenids, nymphalids and hesperiids are the dominant components in the fauna. No genera are endemic to the study region. Available data indicate that 17 species (seven undescribed) and 35 subspecies (six undescribed) are endemic to the region. The level of endemism is relatively low at the species level (10 per cent), but rises to 31 per cent if all taxa (i.e. species and subspecies) are considered, suggesting differentiation of the fauna has been relatively recent. Most of the endemic species and subspecies have narrow ranges and are restricted to the Top End or to the Kimberley and Top End. Interestingly, all of the endemics, with one exception, are restricted to savannah habitats, especially woodland associated with sandstone or sandy soils derived from sandstone. Clearly, the Top End has been important as an area of endemism in the evolution of the butterfly and diurnal moth fauna.

Breeding habitats, or suspected breeding habitats, based on the presence of immature stages on larval food plants or other evidence have been recorded for 142 (87 per cent) species in the study region. More than 50 (31 per cent) species are dependent on various types of monsoon rainforest, of which 34 (21 per cent) are entirely restricted to these habitats, despite the fact that monsoon forests occupy less than 1 per cent of the landscape. About 60 (37 per cent) species are found only in savannah woodland (including eucalypt heathy woodland, eucalypt open woodland, *Acacia* woodland, riparian woodland and tropical grassland). At least 88 (54 per cent) species occur in savannah woodland, but a number of these species breed equally in both savannah woodland and monsoon forest or mixed monsoon forest, while others that are more typical of savannah woodland also breed along the edges of monsoon forest. Eleven of these woodland species are restricted to habitats associated with laterite or sandstone outcrops or sandy soil derived from sandstone/ laterite, often with a heathy understory or a hummock (spinifex) grass understory. At least nine species are regularly associated with paperbark woodland, paperbark swampland or mixed paperbark–pandanus swampland and other damp areas, often adjacent to evergreen monsoon vine forest. Fewer species are associated with floodplain wetlands, mangroves and coastal saltmarsh.

Of the 166 taxa (i.e. species and subspecies), 151 (91 per cent) are resident (i.e. breeding regularly within the study region, with permanently established populations), three (2 per cent) are immigrant (i.e. breeding irregularly, with temporary populations) and 12 (7 per cent) are vagrant or infrequent visitors (i.e. not breeding, with nonresident populations). Although many species (at least 64, or 40 per cent) have been recorded in each month of the year, most show pronounced seasonal changes in relative abundance, with some appearing for just a few months of the year. We distinguished five broad seasonal patterns, with groups of species peaking at different times of the year: early wet season (late October – early January), mid wet season (late December – early March), late wet season and/or early dry season (March–May), mid dry season (May–July) and late dry season (August–October). Available data on the breeding phenology and seasonal abundance of adults indicate that about half of the species breed, or are suspected to breed, continuously throughout the year, while the other half breed on a more seasonal basis. The continuous breeders have multiple generations during the year, whereas those that breed seasonally usually have only one or a few generations
annually. Both groups have evolved a range of life-history strategies that enable them to either breed continuously or survive the long harsh dry season when their food plants are not available.

Of the 166 taxa assessed for their conservation status according to the International Union for Conservation of Nature (IUCN) Red List criteria, one (1 per cent) is categorised as Vulnerable (VU), four (2 per cent) as Near Threatened (NT), 131 (79 per cent) as Least Concern (LC) and 14 (8 per cent) as Not Applicable (NA). No species from the study region are known to have become extinct since European settlement, although one species (Pollanisus sp. 7) has not been detected since it was first recorded 110 years ago. The taxa of most conservation concern are *Ogyris iphis doddi* (VU), *Euploea alcathe enastri* (NT), *Hypochrysops apelles* ssp. ‘Arnhem Land’ (NT), *Idalima* sp. ‘Arnhem Land’ (NT) and *Hecatesia* sp. ‘Arnhem Land’ (NT)—all of which are endemic to the Top End. However, at least nine of the Data Deficient taxa—*Hesperilla crypsigramma* ssp. ‘Top End’, *Suniana lascivia lasus*, *Acrodipsas myrmecophila*, *A. decima*, *Ogyris barnardi barnardi*, *Nesolycaena caesia*, *Theclinesthes albocinctus*, *Pollanisus* sp. 7 and *Agarista agricola agricola*—are of conservation interest because they may qualify as Near Threatened (NT) once adequate data are available.

In terms of representation in the National Reserve System (NRS), most taxa are adequately represented to varying degrees, but 14 lack adequate representation. Populations of six taxa (*Suniana lascivia lasus*, *Acrodipsas myrmecophila*, *A. decima*, *Ogyris barnardi barnardi*, *Jalmenus icilius* and *Theclinesthes albocinctus*) are currently not represented in any conservation reserve, while a further eight (*Ogyris oroetes oroetes*, *O. iphis doddi*, *Nesolycaena caesia*, *Petrelaea toombugenisis*, *Nacaduba kurava felixina*, *Theclinesthes sulphittia*, *Synemon* sp. ‘Roper River’ and *Agarista agricola agricola*) are each currently known from only a single conservation reserve.

Overall, the fauna may be considered in reasonably good health because there are apparently few threatened taxa with narrow geographic ranges. Most species, particularly those associated with savannah woodland, have large geographic range sizes across the study region. However, for species with such widespread distributions over relatively uniform landscapes, the loss of any local area/population will not necessarily be inconsequential. Many of the ecological processes that underpin the health and heterogeneity of the landscape—such as fire, flooding, pollination and seed dispersal—operate across large spatial scales such that loss of a subset of the range and disruption of natural processes may have far-reaching and unforeseen consequences.

A key issue that is likely to adversely affect those species with relatively small geographic range sizes is decline of ecological resources (larval food plants and/or habitat) through inappropriate fire regimes, especially an increase in the frequency and scale of dry season burns. At present, the interval between fires in many tropical savannahs of northern Australia is far too short, such that relatively long unburnt habitat (more than five years) is now rare in the landscape. Habitat loss and fragmentation are also a concern, and other threatening processes may become significant in future, such as invasion of grassy weeds (particularly gamba grass and mission grasses) and the concomitant grass–fire cycle affecting habitat specialist species inhabiting savannah woodland, riparian woodland/open forest and the edges of riparian monsoon forest. The long-term viability of monsoon forest patches and the disproportionately rich butterfly and diurnal moth assemblages they support may ultimately depend on reducing the frequency and intensity of fire in the surrounding matrix. High fire frequency may reduce both patch size and connectivity of monsoon forest, but the extent of connectivity between patches may also be adversely affected by any loss or decline of essential pollinators and seed dispersers.
Northern Australia is one of few tropical places left on Earth in which biodiversity—and the ecological processes underpinning that biodiversity—is still relatively intact. Moreover, scientific knowledge of that biodiversity is still in its infancy and the region remains a frontier for biological discovery. The butterfly and diurnal moth assemblages of the area, and their intimate associations with vascular plants (and sometimes ants), exemplify these points. However, the opportunity to fill knowledge gaps is quickly closing: proposals for substantial development and exploitation of Australia’s north will inevitably repeat the ecological devastation that has occurred in temperate southern Australia—loss of species, loss of ecological communities, fragmentation of populations, disruption of healthy ecosystem function and so on—all of which will diminish the value of the natural heritage of the region before it is fully understood and appreciated.
Introduction

Invertebrates comprise about 80 per cent of the world’s biodiversity, yet they rarely attract the same level of conservation attention as the more ‘charismatic’ vertebrates, such as mammals and birds (Cardoso et al. 2011a, 2011b). They are rarely incorporated into standard wildlife inventory and monitoring programs, let alone used to inform conservation management. Butterflies, however, are an exception. They are popular with the general public, respond rapidly to environmental change and are widely recognised as a key flagship group for insect conservation (Pollard and Yates 1993; New 1997; McGeoch 1998, 2007; Braby and Williams 2016). These are the reasons we have chosen them as our focal group.

However, it may come as a surprise to many readers that there are currently no national long-term recording schemes to determine the geographic range size or to evaluate broad changes in the spatial distribution and relative abundance of butterflies in Australia. This contrasts markedly with other developed countries, where butterfly inventory and/or monitoring schemes—such as ‘Butterflies for the New Millennium’ in Great Britain and Ireland (Asher et al. 2001), the ‘Mapping European Butterflies’ and related monitoring programs (van Sway et al. 2008; Kudrna et al. 2011) and other collaborative initiatives such as the ‘Tropical Andean Butterfly Diversity Project’ in South America (Willmott et al. 2011; Merckx et al. 2013)—have been running for many years or even decades. The vast size of the Australian continent and the comparatively low interest in insects have undoubtedly been impediments to mapping and monitoring the distribution and abundance of butterflies nationally.

There have been only three previous attempts in Australia to systematically catalogue the distribution of butterflies in the form of an atlas. The first atlas was produced more than 30 years ago when a set of maps for all species in Victoria was published by the Entomological Society of Victoria based on a pioneering study (ENTRECS: insect distribution data collection and recording scheme) using a grid cell resolution of 10º longitude x 10º latitude (Crosby 1986). These maps were updated and released 10 years later in CD format by Gullan et al. (1996). More recently, Field (2013) revised the distribution maps of Victorian butterflies, presenting the records as individual data points and distinguishing the records from before and after 1970. The second atlas was the popular book on Tasmanian butterflies by Virtue and McQuillan (1994), which included distribution maps for all 39 species presented as plots of actual records on a 10 km x 10 km grid based on a database maintained by the Tasmanian Parks and Wildlife Service. This work built on the substantial field inventory and base maps prepared earlier by Couchman and Couchman (1977). The species distribution maps presented in the books by Field (2013)
and Virtue and McQuillan (1994), however, were limited by the exceedingly small map sizes and the relatively small spatial scale of the areas covered (Victoria and Tasmania together comprise only 3.9 per cent of the land area of Australia). The third major study was a useful set of maps for all Australian butterfly species compiled by Dunn and Dunn (1991). However, that report and the dataset on which it is based are now out of date and not widely accessible to the general public.

Diurnal moths have received substantially less attention in Australia; however, some progress has recently been made to systematically document the geographical distributions of sun-moths (Castniidae) in Western Australia (Williams et al. 2016). That work shows that the few known species from the northern Kimberley are vastly undersampled and highlights the need for further field surveys.

Sixteen years ago, Sands and New (2002: 29) called for an atlas of the butterflies of Australia, stating: ‘We regard the establishment of a National Data Base for Australian Butterflies as a key tool for conservation planning’. Despite this vision and critical objective, little progress has been made in this direction. The online Atlas of Living Australia (2017) seeks to address this gap, but contains a relatively small amount of data based primarily on collections in most state museums; however, there is currently no process in place to verify or moderate the accuracy of these records, and therefore the error rate in data quality (whether it be taxonomic, spatial, temporal or observer related) is fairly high.

We thus attempt to fill some of these deficiencies by producing a dedicated atlas of butterflies and diurnal moths of northern Australia—a stepping stone towards a national atlas. Our focus is on the western portion of the Australian Monsoon Tropics (AMT)—that is, the region west of the Gulf of Carpentaria (i.e. Kimberley, Top End, Northern Deserts and western Gulf Country). Although we deal with only a small subset of the continent, the region is still a vast and remote area representing about 1,212,200 sq km (15.8 per cent of Australia). This coverage is substantially larger than the combined areas of Victoria and Tasmania for which point data maps of butterflies have previously been produced (Virtue and McQuillan 1994; Field 2013). Until now, this region was arguably the most poorly known area of the continent for butterflies in terms of basic knowledge, such as taxonomy, distribution and biology. Moreover, it is hoped that this work will stimulate similar studies elsewhere in Australia and ultimately lead to the development of a national recording and monitoring scheme.

In this book, we have attempted to break new ground. Our study is unique in several respects: not only does it produce a set of maps for a remote and poorly known area of Australia, but also the distributional point data of each species are integrated and compared with the spatial distribution of their larval food plants. The geographic range of each species is then estimated using Geographical Information System (GIS) software. Using a novel approach, the geographic range is inferred using a set of explicit criteria that integrate the spatial records of each butterfly and diurnal moth with those of their larval food plants (based on online data in Australia’s Virtual Herbarium and the Atlas of Living Australia). In addition, the book includes images of living butterflies, graphs of seasonal changes in relative abundance and phenology charts of the immature stages for each species—information that has been lacking in previous Australian butterfly atlases.

There is currently increasing pressure for the exploitation of northern Australia’s natural resources, particularly expansion of the pastoral, agricultural/horticultural and mining industries, which will inevitably result in substantial habitat loss, fragmentation and degradation and loss of biodiversity (Garnett et al. 2010). In addition, there are a multitude of other threats to the region’s biodiversity, including invasive species (e.g. weeds, feral animals, tramp ants), inappropriate fire regimes, intensification of pastoralism (impacts of cattle grazing) (Garnett et al. 2010) and, of course, climate change, particularly increased atmospheric carbon dioxide concentrations and its effect on vegetational change (Parr et al. 2014). Hence, there is an urgent
need to identify the region’s biological assets, to inform policy and management agencies in their decision-making processes and to set priorities for biodiversity conservation.

While a broad-scale inventory of the terrestrial vertebrates of northern Australia has been undertaken in relation to the extent of their representativeness in the conservation reserve system (Woinarski 1992), there has been little synthesis of the region’s invertebrates. Such baseline data on the composition, distribution and abundance of this key component of biodiversity are critical because they allow us to identify areas of high conservation value, as well as determine the extent and direction of change in future. This atlas aims to collate and disseminate baseline information for one key group of invertebrates: the butterflies and diurnal moths of the insect order Lepidoptera.

Australian Monsoon Tropics

The AMT biome is a distinct geographical region defined by a combination of climate, vegetation types and the kinds of animals and plants adapted to it (Bowman et al. 2010). The AMT covers a vast area (more than 1.5 million sq km, or 20 per cent of Australia) that includes the Kimberley of northern Western Australia, the ‘Top End’ of the Northern Territory, the ‘Gulf Country’ adjacent to the Gulf of Carpentaria and Cape York Peninsula of northern Queensland. The AMT is defined by areas that receive more than 85 per cent of their rainfall between November and April (Bowman et al. 2010); thus, the southern boundary of the region equates to approximately 20–21°S latitude and the northern boundary to the coastline. A characteristic feature of the AMT is the strong latitudinal rainfall gradient, with parts adjacent to the northern coastline having average annual rainfall exceeding 1,500 mm, but with much of the inland region experiencing averages of only 300–600 mm.

The AMT is of international significance because of its large and relatively intact natural landscapes, high biodiversity and strong Indigenous culture (Woinarski et al. 2007a; Bowman et al. 2010; Garnett et al. 2010; Moritz et al. 2013) that spans 65,000 years (Clarkson et al. 2017). The geological landscape is mostly old, eroded and infertile with few marked topographic features. The climate is harsh, with extreme seasonality driven by monsoon rainfall, destructive cyclonic events and an intense dry period during which little or no rain falls. Disturbance by fire is an integral part of the ecosystem (Russell-Smith and Yates 2007; Andersen et al. 2012; Parr et al. 2014), particularly during the dry season. The biome supports a range of habitats and vegetation types not found in the temperate areas of southern Australia. Moreover, the AMT supports the largest single expanse of tropical savannah woodland in good ecological condition in the world, and contains more than 25 per cent of the world’s remaining savannas (Woinarski et al. 2007a). The high integrity of the tropical savannas of the AMT is related to the comparatively low human population density, low density of livestock (cattle and sheep, excluding feral herbivores) and the small proportion of land cleared for agriculture and mining. Unlike the temperate woodlands of southern Australia—which have largely been cleared, fragmented or heavily degraded—the tropical woodlands of northern Australia are intact and remain in a relatively unmodified condition (Woinarski et al. 2007a).

Another striking feature of the AMT is the disjunct blocks of ancient Proterozoic sandstone, which are embedded within the extensive savannah lowland plains (Woinarski et al. 2005, 2007a; Bowman et al. 2010). These sandstone blocks form substantial plateaus associated with steep cliffs and escarpments in the northern Kimberley and Top End (especially in western Arnhem Land) and to some extent in the western Gulf Country and on Cape York Peninsula, and support high levels of species richness and narrow-range endemism with many relict species (Press et al. 1995; Crisp et al. 2001; Woinarski et al. 2006), which contrast markedly with the savannahs in which species typically have very wide distributions.
Two major biogeographic barriers that divide the AMT into three main subregions are the Carpentarian Gap in the east and the Joseph Bonaparte Gulf in the west (Bowman et al. 2010; Eldridge et al. 2012; Catullo et al. 2014; Edwards et al. 2017). The Carpentarian Gap or Carpentaria Basin (at the base of the Gulf of Carpentaria) comprises an extensive area of flat and seasonally dry alluvial plains, tidal estuaries and deltas, and, together with the Gulf of Carpentaria, it separates Cape York Peninsula from the Top End. The Joseph Bonaparte Gulf may actually form two barriers that separate the Top End from the Kimberley, according to recent investigations on the distribution of frogs (Catullo et al. 2014) and vascular plants (Edwards et al. 2017). Eldridge et al. (2012) referred to this broad area as the Ord Arid Intrusion–Victoria River Drainage Barrier. The Ord Arid Intrusion (or Ord region) is a region of lowland country immediately west of the Ord River Basin and Cambridge Gulf, whereas the Victoria River Drainage Barrier (also known as the Daly River Plains) comprises a large tract of lowland country formed by the Victoria River and the headwaters of the Roper River, devoid of any permanent streams (Edwards et al. 2017). The effect of these barriers is reflected in the distinctive elements of the flora and fauna associated with each major subregion.

The biodiversity of the AMT is exceptionally rich (McKay 2017), but only recently have scientific studies revealed the true extent of endemism and the historical assembly (evolutionary origins and adaptive radiation) of its biota. Recent systematic and molecular phylogenetic studies of invertebrates (land snails) (Cameron et al. 2005; Köhler 2010; Criscione et al. 2012; Criscione and Köhler 2013; Köhler and Criscione 2013) and vertebrates (for a review, see Moritz et al. 2013) in the Kimberley and Top End suggest a vastly underdescribed fauna with high levels of narrow-range endemism and a deep evolutionary legacy. The emerging picture is one in which the AMT has substantially higher biodiversity value than previously realised, with multiple ‘hotspots’ of endemism in the Kimberley and Top End (Crisp et al. 2001; Rosauer et al. 2009; Moritz et al. 2013; Pepper and Keogh 2014; Rosauer et al. 2016; Oliver et al. 2017). These hotspots are areas that support high concentrations of taxa with restricted geographic ranges and typically coincide with evolutionary refugia, usually associated with high topographic variability enabling mesic species to persist and evolve during past climatic extremes.

A review of the biogeography of butterflies in the AMT in terms of patterns of species richness, endemism and historical area relationships (Braby 2008a) indicated that the AMT supports a rich fauna, comprising 265 species (62 per cent of the Australian fauna), but endemism is low, with only 15 endemic species (6 per cent). Most of the endemic species (13, or 87 per cent) are associated with savannah, eucalypt woodland and heathy woodland habitats, while most of the non-endemic range-restricted species (38 of 46 species for which the breeding habitat was known) are restricted to various rainforest habitats. Cape York Peninsula was identified as an area of exceptional biodiversity. However, while the biodiversity of the butterfly fauna of Cape York Peninsula has been relatively well explored and documented (Kikkawa et al. 1981), the Kimberley and Top End remain a biological frontier in which the taxonomy and distribution of species are substantially less well known. Hence, one of the goals of this work is to fill knowledge gaps concerning the composition and distribution of butterflies in this western part of the AMT.

Butterflies are also deeply interwoven in Aboriginal culture and are recognised by the traditional owners of northern Australia. For example, in the Top End, butterflies (and moths) are known to the Burarra people in central coastal Arnhem Land around Maningrida as burnpa, to the Yolngu people of eastern Arnhem Land as bonba, to the Mangarrayi and Yangman peoples of the Roper River district as bardbarda, to the Dalabon people of southern Arnhem Land as merlemereh, to the Bilinarra, Gurindji and Malngin peoples of the Victoria River District as marmilarni and to the Warray people of Adelaide River as mirli-mirli. The Warray people even have a specific name,
langga-langga, for the Common Crow, *Euploea corinna* (White et al. 2009)—a species known for its habit of forming spectacular aggregations of adult butterflies in sheltered gorges during the dry season. Traditional language names have been used as the scientific names for several taxa described from the Top End—for example, *Protographium leosthenes geimbia* (Tindale 1927), *Suniana lascivia larrakia* (Couchman 1951), *Synemon wulwulam* (Angel 1951) and *Candalides geminus gagadju* (Braby 2017). The application of such names for butterflies is unparalleled elsewhere in Australia, reflecting the rich traditional culture that still exists in the AMT.

Study region

For the purposes of this work, the boundaries of the study region are similar to those adopted by Woinarski (1992): the western boundary was set to 120°E, the eastern boundary to 140°E, the northern boundary to 10°S (i.e. the northern coast including continental islands) and the southern boundary to 20°S. Within the study region, we recognise four subregions: the Kimberley, Top End, Northern Deserts and the western Gulf Country (Map 1). The four subregions have been delineated more for convenience for describing broad distribution patterns of butterflies and diurnal moths, and do not necessarily represent natural bioregions (c.f. Ebach 2012; Ebach et al. 2015), although the Kimberley Plateau, Top End and Northern Deserts are now generally recognised as distinct bioregions (Bowman et al. 2010; Eldridge et al. 2012; Catullo et al. 2014; González-Orozco et al. 2014; Edwards et al. 2017). In this work, the Kimberley includes almost all of the area of Western Australia north of the Great Sandy and Tanami deserts; the Top End includes areas in the Northern Territory north of approximately 15.5°S latitude; the Northern Deserts comprise the semi-arid and arid zones receiving less than 700 mm mean annual rainfall; whereas the western Gulf Country extends approximately from Limmen Bight in the Northern Territory to Burketown in Queensland and inland to the Barkly Tableland. The definition of the ‘Top End’ is somewhat arbitrary—for example, some authors treat the whole area in the Northern Territory and western Queensland north of about 19°S latitude as the Top End (Eldridge et al. 2012); others limit it to the Northern Territory north of 18°S latitude (Russell-Smith and Bowman 1992; Woinarski et al. 2007a); while yet others have adopted a more stringent approach and just include the area in the Northern Territory north of approximately 15°S latitude, bounded by the mouth of the Victoria River in Joseph Bonaparte Gulf in the south-west and the mouth of the Roper River in Limmen Bight in the south-east (Rosauer et al. 2016).

Two useful biogeographical regionalisations within Australia have been recognised that have relevance to the AMT and hence our study region (Map 1). One is the widely used Interim Biogeographic Regionalisation for Australia (IBRA), in which 89 geographical areas are recognised, representing a landscape approach to classifying the land surface for protecting biological diversity (Thackway and Cresswell 1995). A boundary commonly used to delineate northern Australia is that adopted by the Tropical Savannas Cooperative Research Centre (CRC), which was based on the IBRA classification; the CRC’s southern boundary essentially follows the northern boundary of the Great Sandy Desert, Tanami Desert and Davenport Murchison Ranges bioregions. The second is a set of five phytogeographical regions for Australia recently developed by González-Orozco et al. (2014) and Ebach et al. (2015) based on species turnover in plant distributions (i.e. the rate of change in species composition between sites) that is also correlated with climatic variables (rainfall and temperature seasonality). For northern Australia, two phytogeographical regions are recognised: the Northern and Northern Desert bioregions. The phytogeographical boundary between these two bioregions is shown in Map 1, together with the IBRA bioregional boundary adopted by the CRC. We have included these biogeographical boundaries in our maps because they provide a useful comparison with the delineation of the AMT based on rainfall patterns and with the geographical distributions of our faunal group of interest, butterflies and diurnal moths.
Map 1 Location of the study region in northern Australia

Four component subregions are shown: the Kimberley, Top End, Northern Deserts and western Gulf Country. Two biogeographical boundaries are shown: the phytogeographical boundary that separates the Northern and Northern Desert bioregions (González-Orozco et al. 2014; Ebach et al. 2015), and the IBRA bioregional boundary (Thackway and Cresswell 1995) adopted by the Tropical Savannas CRC. Source: Prepared by the authors.

Map 2 Map of the study region showing spatial variation in average annual precipitation

Both the phytogeographical and bioregional boundaries coincide closely with average rainfall, which shows a pronounced latitudinal gradient. Note: the 1,100 mm mean rainfall isohyet is not shown. Source: Prepared by the authors.
Climate

The climate in the AMT is one of extremes: it is highly seasonal or ‘monsoonal’, in which there are pronounced wet and dry seasons driven largely by seasonal fluctuations in rainfall (Bowman 2002; Bowman et al. 2010). The warmer months are characterised by high temperatures and high humidity, a pronounced wet period and north-westerly trade winds, typically from November to March or April (the wet season), while the cooler months are characterised by a long drought period and south-easterly trade winds, usually from May to October (the dry season). During the wet season, high moisture and torrential rainfall are associated with equatorial monsoon troughs and severe tropical storms, including cyclones, whereas the dry season is dominated by a subtropical high-pressure system and dry air. The Australian summer monsoon is a component of the large-scale Asian–Australian monsoon system, which appears to be of great antiquity, its origins dating back to the Late Eocene–Early Oligocene (for review, see Bowman et al. 2010). The onset and duration of the wet season, and the amount of rainfall and intraseasonal breaks between the monsoon troughs, are highly variable from year to year (Garnett and Williamson 2010; Drosdowsky and Wheeler 2014).

There is a strong latitudinal gradient in annual rainfall, which is a distinctive feature of the AMT (Map 2). The highest rainfall zones in the study region occur in the north-western corner of the Top End (> 1,600 mm mean annual rainfall), Gove Peninsula (> 1,400 mm) and the coastal areas of the north-western Kimberley (> 1,200 mm), with progressively lower rainfall in the inland areas. The highest mean annual rainfall occurs on the Tiwi Islands (> 2,000 mm) and the lowest in the Tanami and Great Sandy deserts (< 400 mm). For the purposes of this atlas, we divide the study region into three climatic zones according to rainfall pattern based on Gaffney (1971): the wetter tropics, with 700–2,200 mm mean annual rainfall; the semi-arid zone, with a mean annual rainfall of 350–700 mm; and the drier arid zone, with a mean annual rainfall of less than 350 mm (Map 5).

The seasonality in rainfall is a major driver of the ecology of the region, with species showing a range of adaptive responses to the alternating annual cycle of rainfall and flood, followed by drought and fire (Bowman 2002; Woinarski et al. 2007a; Garnett et al. 2010). Many animals, for instance, undertake local dispersal or seasonal migration at various spatial scales in response to changes in the availability of resources (Woinarski et al. 2005). The pronounced latitudinal rainfall gradients in the Kimberley and Top End also have a major influence in determining the vegetation type and habitats (see below) and hence the geographic distribution of animals, including butterflies and diurnal moths. Studies of vertebrates (Woinarski 1992; Woinarski et al. 1999) and vascular plants (Bowman 1996) have revealed substantial changes in species richness and composition, with high spatial turnover associated with this latitudinal rainfall gradient from the northern coast to the dry interior of arid Australia. In contrast, there is remarkably little longitudinal variation in species composition across the lowland savannah plains that extend across the region from west to east, with many species having extensive geographic ranges (Woinarski 1992; Woinarski et al. 2005).

Habitats

The study region supports a variety of habitats or vegetation types used by butterflies and diurnal moths, including savannah woodland, rainforest, heathland, mangrove, saltmarsh and floodplain wetlands (Brock 2001; Woinarski et al. 2007a; McKay 2017) (Plates 1 and 2).

The overwhelmingly predominant habitat in the landscape is tropical savannah woodland, also known globally as ‘tropical grassy biomes’ (Parr et al. 2014). This habitat is distinguished by the ubiquitous presence of C₄ grasses in the understorey, shade-intolerant plant species, an overstorey dominated by eucalypts (Eucalyptus and Corymbia) (Plates 1a–c) and the prevalence of fire and herbivory. Tropical savannah woodlands in northern Australia occur extensively on the lowland plains comprising deep, well-drained sandy or lateritic soils.
In the higher rainfall areas, the savannahs comprise eucalypt woodland or eucalypt open forest with a tall grassy understorey (Plate 1a) and, depending on the frequency of fire and soil type, a woody shrub layer. In the lower rainfall areas, the savannahs typically comprise eucalypt open woodland (Plate 1b), tropical grassland or, in some areas, *Acacia* low open woodland (Plate 1d) or *Acacia* tall open shrubland. On the sandstone country that dominates much of the Kimberley and parts of the Top End, such as the Arnhem Land Plateau, tropical heathland, low shrubland and eucalypt heathy woodland (Plate 1c) persist on the dissected plateaus and steep breakaways with nutrient-poor, acidic soils that hold little moisture through the dry season (Russell-Smith et al. 2002). On wetter sites—such as seasonal swamps and the edges of permanent billabongs and creeks—various types of paperbark (*Melaleuca*) habitats prevail (Plates 2g–h), including paperbark open forest, paperbark woodland and paperbark swampland. Paperbark forests are the wetland analogue to the drier eucalypt forests and persist in wetter places at the expense of rainforest where the level of disturbance by fire and/or flood is high (Franklin et al. 2007b).

Where the landscape is protected from fire, forests with a closed canopy, buttressed roots and lianes may occur. These habitats are variously termed rainforest or ‘monsoon forest’ because of their adaptation to the pronounced dry season; they vary in stature and in the dominance of evergreen or deciduous species (Plates 2a, 2b and 2d). Monsoon forests typically occur as a mosaic of relatively small fragmented patches (< 5 ha), with an estimated 16,500 patches occurring in the study region, embedded in the vast savannah landscape (Russell-Smith 1991; Russell-Smith et al. 1992; Russell-Smith and Bowman 1992). The largest and most diverse patches of monsoon forest occur in the higher rainfall areas of the north-western Kimberley (Kenneally et al. 1991; McKenzie et al. 1991), northern coastal areas of the Top End and in western Arnhem Land, where they may exceed 100 ha in extent (Russell-Smith et al. 1992). Although in total they comprise a relatively small area of the study region (2,750 sq km or 0.4 per cent), they nevertheless support a disproportionately high number of plant species (13 per cent of the Northern Territory total) (Woinarski et al. 2005). They also support a rich diversity of butterflies (Hutchinson 1973, 1978; Bailey and Richards 1975; Kikkawa and Monteith 1980; Naumann et al. 1991) and diurnal moths, many of which do not occur in other habitats, while others use them as refuges for aggregation during the long dry season (Monteith 1982). The wetter monsoon forests comprise evergreen monsoon vine forest (Plate 2a) or riparian (gallery) forest and occur where water is available throughout the dry season, such as along perennial rivers, below springs associated with underground aquifers or in deep rocky sandstone gorges and escarpments. The drier monsoon forests frequently occur as semi-deciduous monsoon vine thicket (Plates 2b and 2d) on coastal laterite, coastal sand dunes, inland rocky outcrops composed of limestone, granite and basalt, and sandstone escarpment talus slopes where access to water is limited or unavailable during the dry season. These dry monsoon forests include both evergreen and deciduous tree species, hence the term ‘semi-deciduous’ monsoon vine thicket.

In the higher rainfall areas of the savannah landscape, both eucalypt and paperbark woodland/swampland may develop rainforest elements in the understorey if fire is excluded for a considerable period (Plate 2f). These habitats are important for butterflies and diurnal moths, particularly in riparian areas where mixed riparian monsoon forest (Plate 2c) or mixed riparian woodland develops, because of the high floristic diversity, longer growing season of the larval food plants and cooler, moist microclimatic conditions. Another important habitat for butterflies is rainforest edge (Plate 2e), which comprises the ecotone between monsoon forest and eucalypt woodland.

Other habitats that are used by a few ecologically specialised butterflies include mangrove, saltmarsh, floodplain wetland and open sandstone pavement (Plates 1e–h). Mangrove and saltmarsh occur along the coastline and adjacent areas and are subject to
Plate 1 Examples of breeding habitats used by butterflies and diurnal moths in the study region
(a) savannah woodland, in higher rainfall areas; (b) savannah woodland, in lower rainfall areas; (c) eucalypt heathy woodland on sandstone breakaway; (d) Acacia low open woodland; (e) open sandstone pavement; (f) floodplain wetland; (g) mangrove; (h) saltmarsh.
Plate 2 Examples of breeding habitats used by butterflies and diurnal moths in the study region
(a) wet monsoon forest (evergreen monsoon vine forest); (b) dry monsoon forest (semi-deciduous monsoon vine thicket) on coastal laterite; (c) mixed riparian monsoon forest; (d) dry monsoon forest (semi-deciduous monsoon vine thicket) on limestone; (e) rainforest edge (ecotone between monsoon forest and savannah woodland); (f) paperbark tall open forest with rainforest elements in the understorey; (g) paperbark swampland; (h) paperbark woodland.
periodic tidal inundation; saltmarsh typically occurs as extensive flats along the landward edge of mangroves. Floodplain wetlands are ephemeral or seasonal habitats reliant on major river systems flooding during the wet season; during the late dry season, the heavy clay soils crack and dry out. Open sandstone pavements support 'resurrection' grasses (*Micraira* spp.), the only plant genus that has adapted and radiated to any extent on this very specialised and harsh habitat.

National Reserve System

The National Reserve System (NRS) in northern Australia, according to the *Collaborative Australian Protected Area Database* (2014), consists of three major categories of land tenure: government, Indigenous and private (Map 3). Government land includes world heritage areas, national parks and other nature reserves managed by the Commonwealth, state or Northern Territory governments. Indigenous Protected Areas (IPAs) are Aboriginal-owned land managed by traditional owners through dedicated ranger groups on country. Private conservation reserves include areas that have been purchased for conservation purposes by non-governmental organisations (NGOs), such as the Australian Wildlife Conservancy, Bush Heritage Australia and the Nature Conservancy. In the study region, IPAs cover 154,575 sq km (61 per cent), government national parks and nature reserves 86,062 sq km (34 per cent) and NGO reserves represent 12,765 sq km (5 per cent) of the NRS. Collectively, these different reserve types in northern Australia, which constitute 253,402 sq km (21 per cent of the study region), aim to protect and manage unique landscapes and their biological diversity by forming a network of protected areas that is comprehensive, adequate and representative, with the added value that IPAs also protect and maintain cultural values and customary practices (Woinarski et al. 2007a; Garnett et al. 2010; Moritz et al. 2013).

Some of the more significant national parks in the study region include Prince Regent River, Drysdale River and Purnululu national parks in Western Australia; Keep River, Judbarra/Gregory, Litchfield, Kakadu, Garig Gunak Barlu (on Cobourg Peninsula) and Limmen national parks in the Northern Territory; and Boodjamulla (Lawn Hill) National Park in Queensland. Both Purnululu and Kakadu national parks have been afforded World
Heritage status. Significant IPAs include Karajarri, Bardi-Jawi, Wilinggin, Uunggu, Dambimangari and Balanggarraya in the Kimberley; Northern Tanami in the Northern Deserts; Wardaman, Warddeken, Djelk, Laynhapuy, Dhimurr and Anindilyakwa (on Groote Eylandt) in the Top End; and Yanyuwa (Barni-Wardimantha Awara), Thuwathu/Bujimulla (on Mornington Island) and Nijinda Durlga in the western Gulf Country. Examples of private conservation reserves are Mornington Wildlife Sanctuary in Western Australia and Fish River Station, Wongalara Sanctuary and Pungalina-Seven Emu Wildlife Sanctuary in the Northern Territory.

The land tenure outside the NRS consists predominantly of pastoral land (both freehold and leasehold) used for cattle production (c. 70 per cent of the total area) and private Indigenous lands, with smaller areas devoted to agriculture/horticulture and mining (Woinarski et al. 2007a; Garnett et al. 2010). Mining may also occur under permit in conservation reserves, on Indigenous lands (for example, Melville Island) and on pastoral leases. However, while protected areas are crucial for biodiversity conservation, management of the non-protected areas (i.e. the larger ‘matrix’ surrounding conservation reserves) is also necessary to ensure connectivity and continuity of ecological and evolutionary processes within the landscape (Woinarski 1992; Garnett et al. 2010; Moritz et al. 2013). In other words, pastoral lands and Indigenous lands that are not part of the NRS also have critical roles to play in biodiversity conservation.

Early history of butterfly studies

The sparse population density of the study region and its remoteness from the major population centres of Australia, which are primarily concentrated in the south-east of the continent, has meant that not until recent times have there been regular and substantial field collecting and research activity. Prior to 1970, recording of the butterfly and diurnal moth fauna was spasmodic, undertaken largely by naturalists and entomologists visiting the Kimberley or Top End for brief periods and usually concentrated around the major ports such as Darwin, Wyndham and Derby, although some did make arduous explorations to areas that would have been extremely challenging at the time, and are still frontier places today! A brief account of some of these pioneers and their published studies is provided here.

It is not certain when the first specimens were collected from the study region. The subspecies *Euploea darchia darchia*, which is endemic to the Kimberley and Top End, was described by W. S. Macleay in 1826 (under the name *Danais darchia*) based on material collected during Captain P. P. King’s voyages (Macleay 1826; Edwards et al. 2001), and may represent the first scientific collection of butterflies from the region. King made four voyages between 1817 and 1822 during which he explored and meticulously charted the northern coast of Australia. He was accompanied by the botanist A. Cunningham, who also collected insects on these voyages, but it is not clear where the specimens were collected, other than somewhere along the Northern Territory coast (Oberprieler et al. 2016). Unfortunately, the type material of *E. darchia* is lost and presumably destroyed (Waterhouse 1937b), and the exact locality for the type is unlikely to be established, as is the case for all type specimens of other insects described by Macleay (Oberprieler et al. 2016).

King was also the first European to visit Cobourg Peninsula and, in 1818, he mapped (and named) the inlet of Port Essington. A remote British military colony was subsequently established at Port Essington between 1838 and 1849, which at that time was the only European settlement in northern Australia. The colony allowed many early Victorian-era natural history collectors to visit the area, the most notable of whom was John Gilbert, in 1840 and 1841 (Fisher and Calaby 2009). Although Gilbert collected mainly birds and mammals, he also collected insects, which were sent back to England for taxonomic appraisal (Fisher and Calaby 2009). The insects almost certainly included samples of butterflies and moths, but this material has not yet been
studied. However, the type of *Idalima leonora* was collected from Port Essington (Walker 1854); this fine diurnal moth species was described (as *Agarista leonora*) by Edward Doubleday in England in 1846 based on material (two specimens) in the John Gould collection. Doubleday subsequently described *Euploea sylvester pelor* in 1847, although it is not certain exactly where the type came from other than somewhere in ‘north-western Australia’ (Edwards et al. 2001). A few years earlier, *Papilio fuscus canopus* was described by J. O. Westwood, in 1842 (as *Papilio canopus*), based on type material from nearby Melville Island (Edwards et al. 2001). A small British military outpost was established on Melville Island between 1824 and 1829 (Fisher and Calaby 2009), and this may have been the time when the first specimens of *P. fuscus canopus* were collected.

In 1887, W. W. Froggatt—who a few years earlier was appointed the natural history collector for the Macleay Museum at the University of Sydney—was sent to the western Kimberley (Derby, Lennard River, Fitzroy River, ‘Barrier Ranges’) for almost a year to collect insects and other natural history objects (Froggatt 1934). Most of Froggatt’s material is housed in the Macleay Museum and has not been examined, although a specimen of the rare and currently undescribed *Hecatesia* sp. ‘Amata’ on permanent loan in the Australian National Insect Collection (ANIC) has been examined.

In 1908–09, F. P. Dodd and his second son, W. D. Dodd, spent 10 months stationed at Darwin (Anonymous 1909; Dodd 1935a; Monteith 1991), where they made a substantial collection of butterflies and other insects. They were based at the old railway workshops and locomotive depot (now subsumed by the suburb of Parap) and collected extensively within a radius of a few kilometres and from the nearby East Point (Braby and Nielsen 2011). Most notable among the many discoveries made by the Doods was *Ogyris iphis doddi*, which was formally described by G. A. Waterhouse and G. Lyell in 1914 (Waterhouse and Lyell 1914; see also Dodd 1935a; Braby 2015a). Waterhouse (1932) also later described several hesperiids based on Dodd material from ‘Port Darwin’. W. D. Dodd subsequently visited the Kimberley (Broome, Derby, Fitzroy River, Grant Range) and the Top End (Melville and Bathurst islands, Darwin, Pine Creek, western Arnhem Land) during an epic (18-month) solo field expedition in 1912–13 funded by the South Australian Museum (Monteith 1991). The butterfly and other natural history specimens collected on that field trip are currently registered in the South Australian Museum (SAM). Many years later, Dodd (1935b, 1935c, 1935d) recounted his experiences in the Kimberley and the Top End and referred to several butterflies—namely, *Ogyris amaryllis, Papilio fuscus, Liphyra brassolis* and *Candalides margarita*.

During 1921–22, N. B. Tindale, an anthropologist and entomologist at the South Australian Museum, undertook extensive field studies on Groote Eylandt and its adjacent islands and the Roper River area, in the Northern Territory, and published several key papers from this work (Tindale 1922, 1923, 1927), including the description of *Nesolycaena urumelia* (as *Adaluma urumelia*). Tindale subsequently visited Mornington Island, Queensland, in 1963 (Fisher 1992). T. G. Campbell visited the Northern Territory from 1929 to 1933; he mainly collected butterflies at Brocks Creek, but also on Melville Island and Wyndham, in Western Australia. Much of his material was new and subsequently described by Waterhouse (1933, 1938). J. O. Campbell visited Darwin in 1945 and published an account of the butterflies he recorded (Campbell 1947). F. M. Angel and F. E. Parsons made an expedition to the Northern Territory in 1948; they travelled along the Stuart Highway from Adelaide, in South Australia, and made thorough collections around the major towns between Elliott and Darwin, details of which they subsequently published (Angel 1951; Couchman 1951). Of particular interest were the discovery and description of two new taxa: *Synemon wulwulam* and *Suniana lascivia larrakia* (as *Suniana larrakia*).
Warham (1957) and Koch (1957) made early compilations of the butterfly fauna of the Kimberley. Koch subsequently published a list of species from Koolan Island in Yampi Sound, Western Australia (Koch and van Ingen 1969; Koch 1975), which was later updated by McKenzie et al. (1995). J. C. Le Souëf visited the Top End in 1969 and again in 1971 (Le Souëf 1971); he mainly collected between Darwin and Mataranka, and between Timber Creek in the Northern Territory and Wyndham in Western Australia. Of particular note was the discovery of *Deudorix smilis*, which was recorded for the first time from Australia and described as a distinct subspecies, *Deudorix smilis dalyensis* (as *Virachola smilis dalyensis*) (Le Souëf and Tindale 1970; see also Braby 2016c).

Other less well-known field workers operating during the early twentieth century were M. Lain and F. Omer-Cooper, both of whom collected in northern Arnhem Land (including King River and Maningrida) in 1915–16 and 1968, respectively (Peters 1969). L. D. Crawford collected many butterflies from Darwin in 1955, as did R. G. Byrnes, who also travelled widely in the north-western corner of the Top End and eastern Kimberley during 1969–70.

In the 1950s and 1960s, agricultural research stations were established at Kununurra in Western Australia and Humpty Doo and Katherine in the Northern Territory. This led to the appointment of permanent entomologists in these towns and, although their focus was mainly on insect pest species, butterflies were reared and collected, especially skippers (Hesperiidae) associated with rice. The study by Koch (1957), for example, was based primarily on material in the Kimberley Research Station and Ord River Station (near Kununurra) made by C. F. H. Jenkins in 1944, R. G. Lukins in 1953 and L. E. Koch in 1957, among others.

Between 1970 and 1980, the level of field exploration of northern Australia and resulting scientific publications on the butterflies of the region increased dramatically, particularly from remote areas that previously had been poorly surveyed, such as the western and northern Kimberley and western Arnhem Land (e.g. Common 1973, 1981; Hutchinson 1973, 1978; Bailey and Richards 1975; Hall 1976, 1981; Common and Upton 1977; Edwards 1977, 1980, 1987; Dunn 1980; Kikkawa and Monteith 1980; Monteith 1982). From the 1980s to the present there has been a more or less permanent presence of local naturalists, amateur lepidopterists and professional entomologists, mainly based in Darwin, with an interest in butterflies.

Aims and purpose

This book has several aims. The main purpose is to compile a comprehensive inventory and atlas of the butterflies and diurnal moths of the western section of the AMT. In particular, we aimed to answer the following questions:

1. **How many species occur in the region** (i.e. what is the overall species richness)?
2. **What kinds of species occur in the region** (i.e. what is the composition)?
3. **What proportion of and which taxa are restricted to the region** (i.e. what is the level of endemism)?
4. **What is their geographical/breeding range** (i.e. what is their spatial distribution)?
5. **What are their ecological requirements according to larval food plant specificity and habitat preferences?**
6. **What is the breeding status of those species** (i.e. which taxa are resident, immigrant, visitor or vagrant)?
7. **When are they most abundant as adults** (i.e. what is their temporal distribution), do they breed continuously or seasonally and what strategies have they evolved to cope with the adversity of the dry season?
8. **What is their conservation status** (i.e. which taxa are under threat)?

The overall goal is to provide the scientific basis on which to ensure the future conservation of this diverse group of invertebrates. By answering such fundamental questions, analysis of distributional patterns can then be undertaken to provide a broader perspective of the historical biogeography and evolutionary history of the fauna as a whole (Bowman
et al. 2010), as well as to identify centres of endemism or biodiversity 'hotspots' that enable policymakers and managers to set priorities for conservation management (Braby and Williams 2016). Although not strictly part of this work, these later goals will be the subject of a forthcoming study.

Although our main focus is on butterflies, we have included a set of diurnal moths (31 species) for several reasons. First, diurnal moths are usually ignored by butterfly workers because they are moths, yet they show many characteristics similar to, and are often confused with, butterflies—for example, they are day-flying, colourful, often conspicuous, may feed on flowers and many have similar life histories in that most are phytophagous folivores. Second, moth workers frequently ignore diurnal moths because they are not active, or rarely active, at night. However, our selection and inclusion of diurnal moths are somewhat subjective. We have generally included only the more conspicuous species representing the families Sesiidae, Castniidae, Zygaenidae, Immidae, Geometridae, Uranidae, Erebidae and Noctuidae (Agaristinae) and have not dealt with the smaller, less conspicuous groups (e.g. Heliozelidae, Glyphipterigidae, Heliodinidae, Brachodidae, Choreutidae). Also, with the exception of one species, we have not included members of the diurnal Arctiinae (family Erebidae) (e.g. Amata, Asura) because the taxonomy and species boundaries of these genera are in such a parlous state. And we have not included the Sphingidae, several of which are day-flying (e.g. Cephonodes) or crepuscular (e.g. Macroglossum), because of the great difficulty of identifying the species in flight. Even specimens of Cephonodes are difficult to identify and the genus in northern Australia comprises a complex of at least four species, which are currently under taxonomic revision (M. S. Moulds, unpublished data). Two species of Agaristinae appear to be strictly nocturnal (Leucogonia cosmopis, Ipanica cornigera) while several others are crepuscular (Periopita ardesca, Radinocera spp., Mimeusemia spp.); however, all of these are included for completeness given that the subfamily is such a dominant group in the fauna, with 19 taxa.

Using this book

This book is intended as a reference work for lepidopterists, butterfly naturalists, hobbyists and collectors, as well as professional natural resource managers, conservation biologists, entomologists, scientists and students interested in landscape ecology and tropical ecology. It should also provide an important resource for those people interested in butterflies who are visiting northern parts of Australia. Moreover, it will provide a baseline assessment of the biodiversity of butterflies and day-flying moths in the region, given that the AMT is undergoing substantial environmental change. Thus, it will undoubtedly be viewed as a valuable information resource for political debate on future land use.

Of interest to most readers will be the species accounts, which form the basis of this book. For each species, we have organised the information into eight topics: distribution, any excluded records, habitat, larval food plants, attendant ants (for lycaenid butterflies), seasonality, breeding status and conservation status. The distribution (and excluded data) section includes a map showing the point data, together with the spatial distribution of the relevant larval food plants, and a geographic range map based on those data points. The habitat and larval food plant (and attendant ants) sections provide a summary of the main ecological resources required for each species within their geographic distribution. The seasonality section includes phenology charts of the adult and immature stages and, where sufficient data are available, graphs showing seasonal changes in relative abundance—that is, their occurrence in time. The section on breeding status was derived by integrating information on distribution, habitat, larval food plants and seasonality. The section on conservation status was determined from an analysis of distribution and breeding status.
Methods

Database

The data compiled for this atlas were stored and managed in a dedicated relational database, using Microsoft Access, developed by the Northern Territory Flora and Fauna Division, and is now publicly available through the *Atlas of Living Australia* (www.ala.org.au). The database was constructed specifically to manage invertebrate data collected from targeted field surveys of threatened species, faunal inventories and incidental observations. The structure of this database is shown in Figure 1. The fields were organised into six tables, of which the three most relevant are the taxon table, the site table and the incidental table. Descriptions of some of the more critical fields used to capture data are summarised in Table 1.

The total number of species records assembled for this project was 23,885, of which 13,146 (55 per cent) were observations, 8,110 (34 per cent) specimens and 2,629 (11 per cent) literature. The spatial and temporal data collected for each species consisted of five main sources: vouchered specimens (S), specimens netted and released (N), photographs (P), field observations (O) and scientific literature (L) (Table 1). For the purposes of this work, codes N, P and O were combined into a single category, 'Observation'. Vouchered specimens consisted of specimens in museum collections and in most cases these are registered with an accession number. The majority of specimens are registered in the Museum and Art Gallery of the Northern Territory (NTM), the Northern Territory Economic Insect Collection (NTEIC) and the Australian National Insect Collection (ANIC). Some additional museum data were sourced through the *Atlas of Living Australia*, particularly for material that has been registered and databased in the South Australian Museum (SAM), Museum Victoria (NMV) and Australian Museum (AM).

A ‘species record’ was defined as a unique site–date occurrence for a particular species. Sites were defined as point localities more than 1 km apart (i.e. the spatial precision from the centre of the point was 500 m) and locations were defined as areas more than 10 km apart.

For example, if 10 species were observed at a site (e.g. Lameroo Beach, the Esplanade, Darwin, Northern Territory) and then the same 10 species were observed at another nearby site, more than 1 km away but less than 10 km distant (e.g. East Point Reserve, Darwin, Northern Territory), on the same day (e.g. 1 January 2000), that would comprise a total of 20 species records from one location representing two sites.

Geocoordinates of all spatial records were first transformed to decimal degrees if required and then plotted using ArcMap, ArcGIS 10.3 Esri. Our dataset consisted of 4,352 spatial records (i.e. unique sampling sites), which are shown in...
Figure 1 Structure and relations of the database used to manage species records
Source: Prepared by the authors.

Map 4 Geographical distribution of spatial records (unique sampling sites) within the study region (n = 4,352)
Source: Prepared by the authors.
Map 4. The distribution of these spatial records shows that most areas within the study region have been sampled, but to varying extents. For instance, there is a strong bias in sampling towards urban areas, such as around the city of Darwin in the north-western corner of the Top End. In contrast, there are fewer sites from the semi-arid and arid zones towards the southern boundary of the study region. Some areas have been very sparsely sampled, such as eastern Arnhem Land, the Barkly Tableland, the Tanami Desert and the Great Sandy Desert.

Excluded records

During the course of compiling an inventory of butterflies and diurnal moths for the study region, a number of records came to our attention that required scrutiny or clarification. Several of these records have already been removed from the inventory following detailed investigation and analysis (see Meyer et al. 2006; Braby 2008a, 2012b, 2014a). These records were excluded because they were deemed to be in error, comprising taxonomic misidentifications (determination errors) or mislabelling (transcription errors), or there was considerable doubt regarding their authenticity, with insufficient evidence provided to substantiate them. Thus, we do not recognise the following 10 species from the study region: Pachliopta liris, Oriens augustulus, Pseudoborbo bevani, Pelopidas agna, Telicota ancilla, Telicota mesoptis, Deudorix diovis, Theclinesthes onycha, Theclinesthes serpentatus and Leptotes plinius. In the case of Telicota ancilla (for the subspecies T. ancilla baudina), the taxon proved to be a junior synonym of T. augias krefftii (Braby 2012b).

Table 1 Descriptions of some of the critical fields used to capture species data, with an example provided to illustrate how data were coded for an individual species record

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxon table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FamilyName</td>
<td>Name of family</td>
<td>Papilionidae</td>
</tr>
<tr>
<td>GenusName</td>
<td>Name of genus</td>
<td>Protographium</td>
</tr>
<tr>
<td>SpeciesName</td>
<td>Name of species</td>
<td>leosthenes</td>
</tr>
<tr>
<td>AuthoritySpecies</td>
<td>Authority of species</td>
<td>(Doubleday 1846)</td>
</tr>
<tr>
<td>SubspeciesName</td>
<td>Name of subspecies</td>
<td>geimbia</td>
</tr>
<tr>
<td>AuthoritySubspecies</td>
<td>Authority of subspecies</td>
<td>(Tindale 1927)</td>
</tr>
<tr>
<td>TaxonName</td>
<td>Genus_species_subspecies</td>
<td>Protographium leosthenes geimbia</td>
</tr>
<tr>
<td>CommonName</td>
<td>Common name</td>
<td>Kakadu Swordtail</td>
</tr>
<tr>
<td>Site table</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiteName</td>
<td>Site code name or number</td>
<td></td>
</tr>
<tr>
<td>Collected_Y</td>
<td>Y coordinates (latitude or northing)</td>
<td>12.84262°S</td>
</tr>
<tr>
<td>Collected_X</td>
<td>X coordinates (longitude or easting)</td>
<td>132.81895°E</td>
</tr>
<tr>
<td>Datum</td>
<td>WGS84, GDA94 or AGD66</td>
<td>WGS84</td>
</tr>
<tr>
<td>CoordinateSystem</td>
<td>Dd = decimal degrees, DMS = degrees, minutes, seconds, DMm = decimal minutes, or E_N (eastling and northing)</td>
<td>Dd</td>
</tr>
<tr>
<td>Zone</td>
<td>Only when projected coordinate system is used (E_N)</td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>Radius from point: 5 m, 10 m, 50 m, 100 m, 250 m, 500 m</td>
<td>250 m</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Error in point reading</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>Elevation (m)</td>
<td>50 m</td>
</tr>
<tr>
<td>Location</td>
<td>Description of location name</td>
<td>Kakadu National Park, Nourlangie Rock, Nanguluwur Art site</td>
</tr>
<tr>
<td>State_Territory</td>
<td>NT, WA, Qld</td>
<td>NT</td>
</tr>
</tbody>
</table>
Data analysis

Geographic range

The geographic range (Maps 6–8) of each butterfly and diurnal moth species was estimated directly from the distribution of spatial records or inferred by combining these records with those of larval food plant(s) or attendant ant. The geographic ranges were generated using a rule set based on the minimum distances between distribution records and, where applicable, the larval food plant or attendant ant data. Records for larval food plants included both known and putative species; however, only native food plant records were plotted.

For each species, several criteria were used to create polygons to estimate the geographic range and determine whether ranges were continuous or disjunct. Based on the distances between spatial records, distributions were classified as continuous or disjunct, with continuous distributions incorporated into range polygons and disjunct distributions surrounded by an arbitrary buffer of 15 km so they could be clearly discerned in the range maps. The method is broadly similar to the α-hull recommended by the IUCN Standards and Petitions Subcommittee (2016) for estimating the extent of occurrence (EOO) of a taxon, but with some notable differences, as follows.

Continuous distribution

Distribution records were included in the polygon only if they were located within a specified distance of one another or had intervening larval food plant records. Thus, the distribution was considered to be continuous when spatial records within the geographic range were 200 km apart, with or without intervening larval food plant records, or 200–500 km apart, but only with intervening

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td>Vegetation community</td>
<td>Monsoon vine thicket at base of sandstone cliff</td>
</tr>
<tr>
<td>Lat</td>
<td>Mapping Y coordinates converted to latitude in Dd with GDA94 or WGS84</td>
<td>–12.84262</td>
</tr>
<tr>
<td>Long</td>
<td>Mapping X coordinates converted to longitude in Dd with GDA94 or WGS84</td>
<td>132.81895</td>
</tr>
</tbody>
</table>

Incidental table

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataType</td>
<td>S = specimen, O = observation, L = literature, N = netted and released, P = photograph</td>
<td>S</td>
</tr>
<tr>
<td>SpecimenNumber</td>
<td>Museum repository/private collection and voucher number of specimen collected</td>
<td>NTM I005572</td>
</tr>
<tr>
<td>Sex</td>
<td>M = male, F = female</td>
<td>F</td>
</tr>
<tr>
<td>CollectionMethod</td>
<td>Sweep net, hand, light trap, etc.</td>
<td>Hand</td>
</tr>
<tr>
<td>Literature</td>
<td>Author (year)</td>
<td></td>
</tr>
<tr>
<td>Date1</td>
<td>Day/month/year</td>
<td>20 December 2009</td>
</tr>
<tr>
<td>ObserverName</td>
<td>Initials and surname</td>
<td>M. F. Braby</td>
</tr>
<tr>
<td>Notes</td>
<td>Early stages, adult behaviour numbers collected etc.</td>
<td>6 larvae, various instars, collected from LFP growing at base of escarpment</td>
</tr>
<tr>
<td>Stage</td>
<td>A = adult, I = immature</td>
<td>I</td>
</tr>
<tr>
<td>ImmatureStage</td>
<td>E = egg, L = larva, P = pupa</td>
<td>L</td>
</tr>
<tr>
<td>Date2</td>
<td>Date of adult emergence for reared specimen</td>
<td>8 January 2010</td>
</tr>
<tr>
<td>HostplantName</td>
<td>Name of genus and species of larval food plant</td>
<td>Melodorum rupestre</td>
</tr>
<tr>
<td>HostplantFamily</td>
<td>Name of family of larval food plant</td>
<td>Annonaceae</td>
</tr>
<tr>
<td>HostplantVoucher</td>
<td>Herbarium repository and voucher number of plant specimen</td>
<td>M. F. Braby 200, DNA</td>
</tr>
</tbody>
</table>
Map 5 Seasonal rainfall zones of northern Australia
Source: After Gaffney (1971).

Map 6 Example of the method used to estimate geographic range: *Delias argenthona*, a species with a continuous distribution, as inferred from distribution records and larval food plant data
Source: Prepared by the authors.

Map 7 Example of the method used to estimate geographic range: *Taractrocera ilia*, a narrow-range endemic restricted to the Arnhem Land Plateau
Source: Prepared by the authors.

Map 8 Example of the method used to estimate geographic range: *Delias aestiva*, a species normally restricted to coastal habitats (mangrove), but with two inland non-breeding records (vagrants)
Source: Prepared by the authors.
larval food plant records. These distances were chosen as a conservative estimate for how far a species may disperse in the presence or absence of larval food plants. Distribution records that fell outside these thresholds were considered to be disjunct (see below). However, there was a sampling bias in the study region (for butterflies and diurnal moths and their larval food plants) related both to the distance from major urban centres and to seasonal rainfall zones (Map 5), with comparatively few distribution records from the remote semi-arid and arid zones (< 700 mm mean annual rainfall). Thus, to adjust for this sampling bias, different distance rule sets were applied to records from the lower rainfall zones with intervening larval food plant data (Table 2).

In addition, seven other criteria based on particular idiosyncrasies of the data or geography were applied to estimate the geographic range for continuous distributions. First, for those species for which the larval food plant was unknown, distribution records were included in the polygon when the distance between them was less than 500 km. Second, marine areas were excluded from polygons and the distance rule sets were not applied across marine gaps, such as gulfs. Third, if a species occurred on any of the larger islands (Bathurst, Melville, Groote or Mornington), the whole island was included in the geographic range. However, if a species had not been recorded from an island, the island was excluded from the geographic range, even if the larval food plant was present and it fell within the polygon. Fourth, areas near the coast (i.e. within 150 km of the coastline) and nearby small islands that fell outside the line joining two distribution records were included in the geographic range, but only if the larval food plant was present or if the butterfly would be expected to occur in the intervening area based on expert opinion. Fifth, for species known to be restricted to particular geological elements—for example, the sandstone plateau of western Arnhem Land—the geological element was used to delimit the geographic range (Map 7). It should be noted that the eastern part of the sandstone plateau of western Arnhem Land is difficult to access and hence there is a paucity of larval food plant (and butterfly/diurnal moth) data from this remote area. Sixth, for species restricted to coastal habitats (e.g. mangroves, saltmarsh), a 10 km wide buffer was applied along the coastline and along mangrove/saltmarsh-lined watercourses between distribution records to estimate the geographic range (Map 8). Finally, for widespread species known to occur throughout the central arid zone, poorly sampled areas such as the south-eastern corner of the study region were included in the geographic range, despite the absence of distribution records.

Disjunct distribution

Distribution records were considered to be disjunct or isolated when the closest points were separated by 200 km or more and there were no intervening larval food plant records, or when the closest points were separated by more than 500 km and there were intervening larval food plant records. However, as noted above, different distance rule sets were applied to the lower rainfall areas of the semi-arid and arid zones (Table 2) to account for the low sampling effort in the southern half of the study region.

Disjunct or isolated distribution records may represent: 1) resident breeding populations, 2) vagrant individuals or 3) temporary range expansions. Disjunct resident breeding populations comprising a single isolated point, or a small cluster of points, outside the main distribution were included in the geographic range with a 15 km buffer. However, often we were not able to distinguish whether the disjunction was a natural one due to an inhospitable area (e.g. absence of breeding habitat) between two resident breeding populations or simply due to low sampling effort in the intervening area. Vagrant individuals or temporary breeding populations outside the normal breeding range were not included in the geographic range size calculations, and were buffered in a contrasting colour (yellow) to indicate their exclusion from the natural geographic range (Map 8).

Endemism

Taxa restricted to the study region are referred to as endemics. We distinguished three types of endemics according to their geographic
range size. Taxa that had small geographical range sizes (≤ 40,000 sq km) were categorised as ‘narrow-range endemics’, whereas those that had exceedingly small distributions (≤ 10,000 sq km) were classified as ‘short-range endemics’ following the definition of M. S. Harvey (Harvey 2002; Harvey et al. 2011). Taxa with slightly larger ranges (40,000–100,000 sq km) were considered ‘restricted’. The 40,000 sq km threshold for narrow-range endemism was chosen because this is the maximum extent of the Arnhem Land Plateau—an area that supports numerous endemic plants (Woinarski et al. 2006) and invertebrates (Andersen et al. 2014).

Relative abundance
Seasonal trends in relative abundance throughout the year were graphed for each species. Relative abundance was estimated from data pooled across the species’ range based on the number of temporal records for each month. For our purposes, a temporal record was defined as the occurrence on a particular date (time) at a given site (space) irrespective of the number of adults recorded or time spent at the site. As noted above, the spatial precision of sites was set to a 500 m radius from its central point—that is, a minimum distance of 1 km was used to distinguish two adjacent sites sampled on the same day. Only species with more than 25 temporal records were plotted, along with two highly seasonal species, Genus 1 sp. ‘Sandstone’ and Periopta ardescens, which had 21 and 23 temporal records, respectively.

The dataset comprised 4,603 temporal records (i.e. unique sampling dates); however, there was substantial seasonal variation, with April having the most records and three times more than September, which had the least (Figure 2). This seasonal difference reflects a bias in sampling effort when surveys or field collections are generally undertaken: April heralds the end of the wet season, when areas become increasingly accessible and insect activity for many species is at its greatest, whereas September coincides with the end of the dry season, when conditions are dry and hot and insect activity is considerably reduced. Hence, more surveys have been carried out in the late wet season than in the late dry season. Thus, to minimise the effect of this seasonal bias in sampling on interpretation of seasonal patterns, we applied a correction factor to adjust for the variation in sampling effort for each month, calculated as follows: correction factor = 616 / n, where 616 is the maximum number of temporal records in April and n is the total number of temporal records in the month (see Table 3).

Table 3 Correction factor used to estimate relative abundance for each month to account for seasonal variation in sampling effort (the number of temporal records)

<table>
<thead>
<tr>
<th>Month</th>
<th>Number of records</th>
<th>Correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>392</td>
<td>1.571</td>
</tr>
<tr>
<td>February</td>
<td>394</td>
<td>1.563</td>
</tr>
<tr>
<td>March</td>
<td>484</td>
<td>1.273</td>
</tr>
<tr>
<td>April</td>
<td>616</td>
<td>1.000</td>
</tr>
<tr>
<td>May</td>
<td>524</td>
<td>1.176</td>
</tr>
<tr>
<td>June</td>
<td>450</td>
<td>1.369</td>
</tr>
<tr>
<td>July</td>
<td>388</td>
<td>1.588</td>
</tr>
<tr>
<td>August</td>
<td>327</td>
<td>1.884</td>
</tr>
<tr>
<td>September</td>
<td>206</td>
<td>2.990</td>
</tr>
<tr>
<td>October</td>
<td>312</td>
<td>1.974</td>
</tr>
<tr>
<td>November</td>
<td>270</td>
<td>2.282</td>
</tr>
<tr>
<td>December</td>
<td>240</td>
<td>2.567</td>
</tr>
</tbody>
</table>

Note: For seasonal variation in the number of temporal records, see Figure 2.
Nomenclature

Scientific nomenclature for butterflies largely follows Braby (2010b, 2011b, 2016a), while that for moths follows Nielsen et al. (1996). The recent proposal to place the species Mycalesis sirius in the genus Mydosama (Kodandaramaiah et al. 2010; Aduse-Poku et al. 2015) is followed. Nomenclature for plants follows the Australian Plant Census (2017) and FloraBase (2017). We have also included nine undescribed species of diurnal moths (from the families Castniidae, Zygaenidae, Geometridae, Erebidae and Noctuidae) and five undescribed subspecies of butterflies (from the families Hesperiidae, Pieridae and Lycaenidae). Formal descriptions of these taxa are currently in preparation (M. F. Braby, unpublished data).

The taxonomic status of the pierid Elodina tongura (Pipeclay Pearl-white), which is endemic to the Top End, requires comment. It is closely related to E. walkeri and may be a junior synonym of that species. Elodina tongura was originally described by Tindale (1923) as a subspecies of E. perdita, based on 16 specimens collected from Groote Eylandt and Winchelsea and Woodah islands, in the Northern Territory, in the wet season between February and April. However, De Baar and Hancock (1993) and De Baar (2004) treated E. tongura as a separate species, considering it to be closely allied to E. walkeri, which was reinstated by De Baar and Hancock (1993) as a species distinct from E. perdita. The type locality of E. walkeri is Darwin (Edwards et al. 2001).

De Baar (2004) indicated that E. walkeri and E. tongura are sympatric in the Darwin region and possibly elsewhere in coastal areas of the Northern Territory, and alluded to differences in adult size, the shade of the yellow basal patch on the underside of the forewing and length of the vesica of the male phallus to distinguish the two species. In contrast, Braby (2000) regarded E. tongura as a junior synonym of E. walkeri based on examination of the syntypes, an extensive series of other material and an unpublished geographical study of the male genitalia. It was concluded that many of the character differences (e.g. adult size, yellow basal flash on the underside of the forewing, the presence of a dark apical patch on the underside of the forewing and the shape of the forewing apex) vary seasonally; thus, the validity of E. tongura as a distinct taxon was considered very doubtful. In the present work, we have therefore not recognised E. tongura until a thorough taxonomic study of the complex is undertaken.

Common names for butterflies follow Braby (2016a); however, most of the diurnal moths do not have standard common names, although some genera do have group names—for example, ‘sun-moth’ for Synemon. Hence, we have proposed common names for all species of moths, including the names for three species of sun-moths recently given by Williams et al. (2016).
Species accounts

Distribution

For each species, the geographical distribution of records, along with those of its native and/or putative larval food plant(s), is presented. For some species of Lycaenidae that are obligately attended by ants or are ant predators—notably, *Liphyra brassolis*, *Acrodipsas* spp., *Hypochrysops* spp., *Arhopala* spp. and *Hypolycaena phorbas*—the spatial distribution of the ant is also included.

Data for known and putative larval food plants were extracted from *Australia’s Virtual Herbarium* (2017). For each plant species, records were vetted using the following procedure. Records were first removed if they were flagged as being of uncertain identity, cultivated, had more than 10 km uncertainty in the coordinates, had no coordinates or were outside the study region by more than one degree of latitude or longitude. The remaining records were then examined spatially and compared against benchmark publications—Liddle et al. (1994) for the Northern Territory and FloraBase (2017) for Western Australia—to identify obvious outliers. Where outliers were detected, the record was examined for potential errors such as mismatches between location and coordinates, and then either deleted or corrected if such an error was detected.

Data for ants were obtained either from the *Atlas of Living Australia* (for *Oecophylla smaragdina*) or from specimens curated in the Tropical Ecosystems Research Centre (TERC) and the ANIC (for *Froggattella kirbii* and *Papyrius* spp.).

For each butterfly and diurnal moth, spatial records were divided into two periods: historical (before 1970) and contemporary (1970 onwards). There were two reasons for this approach. First, prior to 1970 there was comparatively little collecting effort in the study region and a similarly low level of reporting in the scientific literature. Second, locality data for specimens collected before 1970 were rarely, if ever, georeferenced with latitude and longitude; it was not until detailed topographic maps (employing the AGD66 datum) became widely available in the late 1960s and early 1970s that professional entomologists started to routinely include geographic coordinates on their label data. Hence, plotting for historical records almost invariably has low precision and large spatial errors. For example, Tindale (1923) was stationed on Groote Eylandt—an island measuring approximately 70 km by 50 km—for almost a year (June 1921 – May 1922) and published a detailed list of the 52 species he recorded, which included temporal data on the months during which specimens were collected. However, Tindale (1923: 349) mentioned the actual place of capture in the text for only one species: ‘female [*Liphyra brassolis*] flew to a light at 8.30 p.m. on a sultry night, in my camp at Yetiba’. For the others, precise locations were not given. Thus, plotting most of Tindale’s records for Groote Eylandt with any level of precision is problematic. In this case, we have assigned and plotted all records to ‘Yedikba’ (Yetiba) (14.079ºS, 136.457ºE), approximately 25 km south of Alyangula, because this is the only site where we can be certain Tindale was stationed, but the spatial error of such records may well be more than 10 km.

Where multiple data points had the same geographic coordinate, we plotted the contemporary records (≥ 1970, blue symbols) over historic records (< 1970, red symbols) to emphasise more recent occurrences. Thus, for some species historical records may not always be clearly visible in the distribution maps.

Comparison of the spatial distribution of a butterfly or diurnal moth species with its larval food plant(s) required exploration of possible reasons for discrepancies where differences arose. For example, a species may be more widespread than its larval food plant because: 1) the adult regularly disperses outside its breeding area (i.e. the non-breeding distribution is wider than the breeding distribution); 2) the species has additional food plants that have not yet been reported (i.e. knowledge of the breeding area is incomplete); or 3) the food plant may be
underreported and is in fact more widespread than herbarium records indicate. Conversely, a species may be less widespread than its larval food plant because: 1) the species’ distribution may be limited by factors other than the food plant, such as climate; 2) breeding populations of the species may be limited to areas where the food plant occurs above a threshold density or where the extent of the breeding habitat is above a critical minimum size; or 3) the species’ distribution may be underreported and thus our knowledge of it is incomplete.

Excluded data
A number of spatial records were found to be erroneous or doubtful. These records are listed for the relevant species and the data are excluded from the distribution maps. Braby (2000, 2012b, 2014a) and Braby and Zwick (2015) have previously discussed the reliability of some of these records.

Habitat
The habitats listed for each species refer to breeding habitats—that is, where the species completes its life cycle from egg to adult and where the particular larval food plants grow. Habitats were based largely on natural vegetation types and structural classification according to the National Vegetation Information System (Executive Steering Committee for Australian Vegetation Information 2003), together with topographic features and climatic factors. The adult stage of butterflies and diurnal moths may also use other habitats for feeding (e.g. nectar resources) and mating (e.g. landmarks such as hilltops); however, for most species in the study region, these habitats were not well known and thus are generally not reported in this work.

Larval food plants
The known larval food plants, both native and non-native species, are summarised for each species based on records published in the scientific literature and our own unpublished observations. Where multiple food plants were used, comments on any apparent preferences are noted. If the larval food plant had not been

recorded from the study region, we listed the food plant reported from adjacent areas—usually northern Queensland. In most cases, these putative larval food plant records were derived from Braby (2000, 2016a), although in some cases we referred to the primary literature source.

Attendant ants
The larvae, and to some extent pupae, of many Lycaenidae are attended by ants to various degrees. In this work, these ant–lycaenid associations are grouped into five categories: 1) those species not attended by ants; 2) those species usually unattended, but very occasionally attended by a few ants; 3) those species attended by a few ants from several genera in a facultative association; 4) those species constantly attended by many ants of a specific species or genus in an obligate association; and 5) those species that are dependent on ants as a food source in a myrmecophagous association. Ant associations are based primarily on information collated by Eastwood and Fraser (1999) and Braby (2000), combined with subsequent records published in the scientific literature and our own unpublished observations.

Seasonality
For each species, the broad adult flight period and patterns of seasonal changes in relative abundance are given. Additional information on breeding, incidence of the immature stages (eggs, larvae and pupae), number of generations completed annually and incidence of dormancy are also provided where known. A phenology chart showing monthly temporal records of the immature stages is also presented for each species. These charts are necessarily incomplete, but are provided for two reasons: 1) to give an approximation of when the various stages are present during the year; and 2) to highlight knowledge gaps in recording of the life cycle stages. For instance, for some species there are very few or no available temporal data on the incidence of their eggs, larvae or pupae. Migration records are also summarised where this has been reported.
Breeding status

The breeding status of each species was determined, noting whether it was: 1) a resident, in that the species breeds regularly and is permanently established in the study region; 2) an immigrant, in which the species breeds temporarily within the study region and then vacates it on a regular basis; 3) a visitor, in that the species does not breed within the study region, but regularly occurs within its boundaries; or 4) a vagrant, in which the species does not breed and only occasionally or rarely enters the study region, usually in very small numbers. Resident species include those that are nomadic—that is, the population occurs regularly within the study region, but at any given location breeding is temporary.

Conservation status

The conservation status of each species was evaluated according to the IUCN Red List criteria (IUCN 2001; IUCN Standards and Petitions Subcommittee 2016). Although these criteria are designed for global taxon assessments, they can be applied to subsets of global data at different geographical scales (e.g. national, regional or local levels). In this work, we determined the conservation status at the regional level—that is, the status of each species within the study region. Only taxa (species, subspecies) that are endemic to the region qualify for global assessment. For taxa that occur outside the study region—either elsewhere in Australia or outside Australia—the Red List category may differ substantially from the global assessment because we have evaluated only a small subset of the geographic range. For these nonendemic, extralimital taxa we therefore followed IUCN guidelines for the application of Red List criteria to assess populations at the regional level (IUCN 2012). Under these regional criteria, taxa that are introduced, vagrants or rare immigrants (i.e. populations that breed occasionally during favourable conditions, but do not become permanently established) or have recently colonised the region and are currently expanding their range outside the region should not be assessed and are accordingly categorised as Not Applicable (NA).

It should be noted that taxa may be listed as threatened under IUCN criteria because they have small population sizes (criteria C and D) and/or marked population declines (criterion A). However, these parameters are generally unknown for butterflies and diurnal moths in northern Australia; thus, our conservation assessments focused mostly on those distributional parameters (criterion B) for which information is more readily available. Indeed, criterion B is the primary Red List criterion used for status evaluation of butterflies globally (Lewis and Senior 2011), and it has previously been used to assess the conservation status of butterflies in Australia (Braby and Williams 2016).

The EOO, a component of IUCN Criterion B1, was used to evaluate whether a taxon belonged in a threatened category (IUCN Standards and Petitions Subcommittee 2016). Taxa were first sorted according to their geographic range size (based on the calculations described above; see ‘Data analysis’) to determine whether they fell within or close to the threshold of 20,000 sq km to potentially qualify for a threatened category (i.e. Vulnerable). The initial sorting produced a short list of 34 taxa (i.e. with distributions of < 40,000 sq km), which were then scrutinised in more detail to determine the EOO, number of locations or extent of fragmentation and any other known conservation issues such as evidence of decline and/or threatening processes. The EOO was calculated (in square kilometres) using minimum convex polygons or convex hulls in ArcMap, ArcGIS 10.3 Esri Projected Coordinate System: GDA 1994 Australia Albers. Areas of unsuitable habitat (e.g. ocean) within the minimum convex polygon were also included in the area calculation. Based on this information, IUCN Red List categories were then allocated to each of the 34 taxa.

For taxa for which the EOO could not be estimated, because they were known from only one or two sites, the area of occupancy (AOO) was used as an alternative method of assessment. The AOO is a component of IUCN Criterion B2, and the most common approach
is to calculate the area of distribution from range-wide occurrences (grid cells) (Gaston and Fuller 2009). However, this method proved unsatisfactory because of the low spatial resolution of the grid cells employed across the study region (100 km x 100 km = 10,000 sq km) (Braby et al., unpublished data). We therefore used spatial buffering for these locality records (with the buffer set to 15 km) in conjunction with habitat suitability where this was known. The spatial buffering is not an actual estimate of the AOO, but rather an indication that these species are currently known to have exceedingly small geographic range sizes within the study region. That is, these taxa are likely to fall below the threshold of 2,000 sq km to potentially qualify for a threatened category (i.e. Vulnerable) under IUCN Red List criteria.

For taxa assessed as Data Deficient (DD), but which are of conservation interest because they may qualify as Near Threatened (NT) once adequate data are available, we have followed Bland et al. (2017), who recommended that justification tags be assigned to identify knowledge gaps and help prioritise reassessments. For example, lack of information could arise because there are few records or historical records only, there is uncertainty about locations or distribution, or there are uncertain threats or uncertain taxonomy. The actions needed for these taxa are also provided.

Although listing undescribed taxa on the IUCN Red List is discouraged—for example, as Least Concern (LC) or DD (see IUCN Standards and Petitions Subcommittee 2016)—the guidelines do allow for taxa to be evaluated provided there is certainty that the species are being or are about to be described; this is certainly the case for the putative butterfly subspecies and agaristine diurnal moth species that we have assessed (M. F. Braby, unpublished data).
Results and discussion

Patterns of biodiversity

Four key questions we sought to answer relating to biodiversity were: 1) How many species occur in the study region (i.e. what is the overall species richness)? 2) What kinds of species occur in the region (i.e. what is the composition)? 3) What proportion of and which taxa are restricted to the region (i.e. what is the level of endemism)? 4) How are those species distributed spatially?

Species richness

For the first question, our investigations have revealed that 163 species (132 butterflies and 31 diurnal moths), representing 166 taxa, have been recorded from the study region. Three species are each represented by two subspecies within the region: Suniana lascivia (with S. lascivia larrakia and S. lascivia lasus), Appias albina (with A. albina albina and A. albina infuscata) and Agarista agricola (with A. agricola agricola and A. agricola biforis). In terms of their representation within each of the four subregions, 150 species (122 butterflies and 28 diurnal moths) have been recorded from the Top End, 105 species (88 butterflies and 17 diurnal moths) from the Kimberley, 82 species (74 butterflies and eight diurnal moths) from the western Gulf Country and 53 species (45 butterflies and eight diurnal moths) from the Northern Deserts. Thus, the Top End is substantially more diverse than the other subregions and almost three times richer than the semi-arid and arid zones of the Northern Deserts.

Interestingly, a substantial number of the species known from the study region have only been detected during the past four decades. Thirty-seven taxa (22 per cent) have been discovered or recorded for the first time since 1970 (Table 4). Of these, 11 species represent their first recording for Australia. Some of these newly recorded species concern intrusions from South-East Asia (e.g. Appias albina infuscata, Danaus chrysippus cratippus, Acraea terpsicore and Junonia erigone), while others are species entirely new to science (e.g. Taractrocera psammopetra, Acrodipsas decima and Nesolycaena caesia) or new taxa that have not yet been formally described (e.g. Leptosia nina ssp. ‘Kimberley’, Synemon sp. ‘Kimberley’, Idalima sp. ‘Kimberley’, Hecatesia sp. ‘Arnhem Land’, Hecatesia sp. ‘Arnhem Land’ and Radinocera sp. ‘Sandstone’). Notably, during the course of this study, two taxa not recorded for more than 100 years were rediscovered: an extant breeding population of Ogyris iphis doddi was found in
Table 4 Records of ‘new’ species from the study region during the past four decades (since 1970)

<table>
<thead>
<tr>
<th>Species</th>
<th>Year</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zizula hylax attenuata</td>
<td>1971</td>
<td>First record for study region</td>
<td>Le Souëf (1971)</td>
</tr>
<tr>
<td>Alcides metaurus</td>
<td>1972</td>
<td>First record for study region</td>
<td>Braby (2014a)</td>
</tr>
<tr>
<td>Idalima sp. ‘Arnhem Land’</td>
<td>1972</td>
<td>First record for Australia</td>
<td>This volume</td>
</tr>
<tr>
<td>Candalides geminus gaga疏导</td>
<td>1972</td>
<td>First record of species for study region; first record of subspecies for Australia</td>
<td>Braby (2017)</td>
</tr>
<tr>
<td>Hecatesia sp. ‘Arnhem Land’</td>
<td>1973</td>
<td>First record for Australia</td>
<td>This volume</td>
</tr>
<tr>
<td>Hypochrysops apelles ssp. “Top End”</td>
<td>1973</td>
<td>First record of species for study region; first record of subspecies for Australia</td>
<td>This volume (see also Common and Waterhouse 1981)</td>
</tr>
<tr>
<td>Yoma sabina sabina</td>
<td>1976</td>
<td>First record for study region</td>
<td>This volume (see also Common and Waterhouse 1981)</td>
</tr>
<tr>
<td>Eurema brigitta australis</td>
<td>1977</td>
<td>First record for study region</td>
<td>Braby (2014a)</td>
</tr>
<tr>
<td>Danaus chrysippus cratippus</td>
<td>1977</td>
<td>First record for Australia</td>
<td>Common and Waterhouse (1981); Braby (2015a)</td>
</tr>
<tr>
<td>Junonia erigone</td>
<td>1977</td>
<td>First record for Australia</td>
<td>Edwards (1977)</td>
</tr>
<tr>
<td>Petrelaea tombugensis</td>
<td>1977</td>
<td>First record for study region</td>
<td>Common and Waterhouse (1981); Braby (2015a)</td>
</tr>
<tr>
<td>Danaus plexippus</td>
<td>1979</td>
<td>First record for study region</td>
<td>Dunn (1980)</td>
</tr>
<tr>
<td>Leptosia nina ssp. ‘Kimberley’</td>
<td>1980</td>
<td>First record for Australia</td>
<td>Common and Waterhouse (1981); Naumann et al. (1991)</td>
</tr>
<tr>
<td>Acrodipsas myrmecophila</td>
<td>1981</td>
<td>First record for study region</td>
<td>Dunn and Dunn (1991)</td>
</tr>
<tr>
<td>Euploea alcaathoe enastri</td>
<td>1988</td>
<td>First record of species for study region; first record of subspecies for Australia</td>
<td>Fenner (1991)</td>
</tr>
<tr>
<td>Hesperilla crypsigramma ssp. “Top End”</td>
<td>1989</td>
<td>First record of species for study region; first record of subspecies for Australia</td>
<td>Field (1990a)</td>
</tr>
<tr>
<td>Nesolycaena caesia</td>
<td>1990</td>
<td>First record for Australia</td>
<td>d’Apice and Miller (1992)</td>
</tr>
<tr>
<td>Papilio anactus</td>
<td>1991</td>
<td>First record for study region</td>
<td>Puccetti (1991)</td>
</tr>
<tr>
<td>Vanessa kershawi</td>
<td>1991</td>
<td>First record for study region</td>
<td>Puccetti (1991)</td>
</tr>
<tr>
<td>Acrodipsas decima</td>
<td>1991</td>
<td>First record for Australia</td>
<td>Miller and Lane (2004)</td>
</tr>
<tr>
<td>Euchromia creusa</td>
<td>1993</td>
<td>First record for study region</td>
<td>Braby (2014a)</td>
</tr>
<tr>
<td>Eurema alitha novaguineensis</td>
<td>1997*</td>
<td>First record for study region</td>
<td>Braby (1997)</td>
</tr>
<tr>
<td>Theclinesthes albocinctus</td>
<td>1997</td>
<td>First record for study region</td>
<td>Grund (1998)</td>
</tr>
<tr>
<td>Synemon sp. ‘Kimberley’</td>
<td>2000</td>
<td>First record for Australia</td>
<td>This volume (see also Williams et al. 2016)</td>
</tr>
<tr>
<td>Agarista agricola agricola</td>
<td>2005</td>
<td>First record of subspecies for study region</td>
<td>This volume</td>
</tr>
<tr>
<td>Mimeusemia centralis</td>
<td>2007</td>
<td>First record for study region</td>
<td>Braby (2014a)</td>
</tr>
<tr>
<td>Comocrus behri</td>
<td>2008</td>
<td>First record for study region</td>
<td>Braby (2011a)</td>
</tr>
<tr>
<td>Bindahara phocides</td>
<td>2009</td>
<td>First record for study region</td>
<td>This volume</td>
</tr>
<tr>
<td>Radinocera sp. ‘Sandstone’</td>
<td>2009</td>
<td>First record for Australia</td>
<td>Braby (2015a)</td>
</tr>
<tr>
<td>Appias albina infuscata</td>
<td>2010</td>
<td>First record of subspecies for Australia</td>
<td>Braby et al. (2010b)</td>
</tr>
<tr>
<td>Taractrocera psammopetra</td>
<td>2010</td>
<td>First record for Australia</td>
<td>Braby and Zwick (2015)</td>
</tr>
<tr>
<td>Ogryes barnardi barnardi</td>
<td>2011</td>
<td>First record for barnardi</td>
<td>Dunn (2013)</td>
</tr>
<tr>
<td>Acraea terpsicore</td>
<td>2012</td>
<td>First record for Australia</td>
<td>Braby et al. (2014a, 2014b)</td>
</tr>
<tr>
<td>Mimeusemia econia</td>
<td>2017</td>
<td>First record for study region</td>
<td>This volume</td>
</tr>
</tbody>
</table>

* The earliest specimens of this species date back to 1909; however, it was previously confused with Eurema hecabe such that E. alitha was not formally recognised in the fauna until 1997.

Note: Taxa are listed in chronological order according to the year they were first discovered or detected, not necessarily the year they were first reported in the literature.
the Top End in 2014, 105 years after it was last recorded breeding, in 1908–09, by F. P. Dodd (Braby 2015a); and an extant breeding population of *Hecatesia* sp. ‘Amata’ was found in 2008, 121 years after it was last recorded. The latter species was previously known only from a single specimen collected in the Kimberley in 1887 by W. W. Froggatt (M. F. Braby, unpublished data). Also, the subspecies *Suniana lascivia lasus* was rediscovered on Bathurst Island in 2009, more than 70 years after it was last recorded on the island; it was previously known only from three specimens collected in 1933 by T. G. Campbell (Waterhouse 1937a). These rediscoveries and the large number of recent additions to the fauna highlight how poorly known the region is in terms of its butterfly and diurnal moth biodiversity, but also the substantial field effort undertaken during the past 45 years; northern Australia has clearly been a frontier for field discovery.

An obvious question, then, is how many species remain to be discovered? Modelling the rate of species accumulation since 1970 suggests a predicted total richness of 175 taxa, which will be discovered progressively up to the year 2068 (Figure 3). The uncertainty of this estimate (95 per cent confidence interval) is ± 9 species. Thus, it is estimated that approximately 10 ± 9 more taxa remain to be found, which at the current discovery rate may take another 50 years. In other words, the modelling suggests the inventory is close to completion, with an estimated 94 per cent of the species recorded.
Composition

In terms of composition, the fauna comprises seven taxa of Papilionidae (4 per cent), 31 Hesperiidae (19 per cent), 20 Pieridae (12 per cent), 33 Nymphalidae (20 per cent), 43 Lycaenidae (26 per cent) and 32 diurnal moths (19 per cent) representing nine different families. Thus, the lycaenids, nymphalids and hesperiids are the dominant components in the fauna. For the butterflies, these proportions compare well nationally at the species level, although the Hesperiidae (30 species, or 23 per cent) are underrepresented (hesperiids comprise 29 per cent of the Australian fauna), whereas the Nymphalidae (33 species, or 25 per cent) and Pieridae (19 species, or 14 per cent) are slightly overrepresented (nymphalids and pierids comprise 21 per cent and 9 per cent of the Australian fauna, respectively) (Braby 2016a).

Endemism

Our third question was to ascertain which species are found only within the study region. Although no genera are endemic to the study region, 17 species (including seven undescribed diurnal moths) and 35 subspecies (including five undescribed butterflies) are endemic to the region (Table 5). The poorer taxonomic resolution among the moths, with a high proportion of undescribed taxa (seven of 31 species, or 23 per cent), reflects the greater level of taxonomic interest and attention given to the butterflies. This level of endemism is relatively low at the species level (10 per cent), but rises to 31 per cent if all taxa (i.e. species and subspecies) are considered. Thus, endemism is more pronounced below the level of species, suggesting that differentiation of the fauna has been relatively recent. In addition, six species (Leptosia nina, Appias albina, Danaus genutia, Cethosia penthesilea, Phalanta phalantha and Deudorix smilis) have—within Australian limits—their geographic ranges restricted or largely restricted to the study region. That is, these species do not occur elsewhere on the Australian continent, but do occur more widely in South-East Asia.

Most of the endemic species and subspecies have narrow ranges and are restricted to the Top End or to the Top End and Kimberley subregions. Indeed, of the 52 taxa endemic to the study region, 49 (15 species and 34 subspecies, or 96 per cent) occur in the Top End and, of these, 28 taxa (10 species and 18 subspecies, or 55 per cent) are found only in the Top End (Table 5). The three remaining endemic taxa that do not occur in the Top End are Leptosia nina ssp. ‘Kimberley’, Nesolycaena caesia and Synemon sp. ‘Kimberley’—all of which are restricted to the Kimberley. No taxa are endemic to the western Gulf Country or the semi-arid and arid areas of the Northern Deserts. Despite the high variation in collecting effort between the subregions, available data indicate that the Top End has been important in the evolution of the butterfly and diurnal moth fauna, which supports the conclusion of Cracraft (1991) and Bowman et al. (2010) that the Top End is an area of endemism.

At the species level, all the endemics with one exception are restricted to woodland or open woodland habitats, especially those associated with sandstone or sandy soils derived from sandstone. The single exception is the diurnal moth Ctimene sp. ‘Top End’, which is restricted to monsoon forest. Braby (2008a) first noted this striking association between endemism and broad habitat type for butterflies across the AMT as a whole. He suggested this pattern may reflect differences in the origin and historical assembly of the biome, with the savannah fauna possibly comprising an older autochthonous element compared with those taxa associated with monsoon forest, which may be a more recent element from South-East Asia.
Table 5 Taxa (species and subspecies, including undescribed taxa) endemic to the study region and their occurrence within the four major subregions

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimberley</td>
<td>Top End</td>
</tr>
<tr>
<td>Endemic species</td>
<td></td>
</tr>
<tr>
<td>Mesodina gracillima E. D. Edwards, 1987</td>
<td>++</td>
</tr>
<tr>
<td>Taractrocera ilia Waterhouse, 1932</td>
<td>++</td>
</tr>
<tr>
<td>Taractrocera psammopetra Braby, 2015</td>
<td>+</td>
</tr>
<tr>
<td>Acrodipsas decima Miller & Lane, 2004</td>
<td>++</td>
</tr>
<tr>
<td>Nesolycaena urumelia (Tindale, 1922)</td>
<td>+</td>
</tr>
<tr>
<td>Nesolycaena caesia d’Apice & Miller, 1992</td>
<td>++</td>
</tr>
<tr>
<td>Pseudosesia oberthurii (Le Cerf, 1916)</td>
<td>++</td>
</tr>
<tr>
<td>Synemon sp. ‘Kimberley’</td>
<td>++</td>
</tr>
<tr>
<td>Synemon sp. ‘Roper River’</td>
<td>+</td>
</tr>
<tr>
<td>Pollanisus sp. 7</td>
<td>++</td>
</tr>
<tr>
<td>Climene sp. ‘Top End’</td>
<td>++</td>
</tr>
<tr>
<td>Radinocera sp. ‘Sandstone’</td>
<td>+</td>
</tr>
<tr>
<td>Idalima metasticta Hampson, 1910</td>
<td>++</td>
</tr>
<tr>
<td>Idalima leonora (Doubleday, 1846)</td>
<td>+</td>
</tr>
<tr>
<td>Idalima sp. ‘Arnhem Land’</td>
<td>++</td>
</tr>
<tr>
<td>Hecatesia sp. ‘Arnhem Land’</td>
<td>++</td>
</tr>
<tr>
<td>Crinia darwiniensis (Butler, 1884)</td>
<td>++</td>
</tr>
<tr>
<td>Endemic subspecies</td>
<td></td>
</tr>
<tr>
<td>Protographium leosthenes geimbia (Tindale, 1927)</td>
<td>++</td>
</tr>
<tr>
<td>Graphium eurypylus nictimus (Waterhouse & Lyell, 1914)</td>
<td>+</td>
</tr>
<tr>
<td>Papilio fuscus canopus Westwood, 1842</td>
<td>+</td>
</tr>
<tr>
<td>Hasora hurama territorialis Meyer et al., 2015</td>
<td>++</td>
</tr>
<tr>
<td>Hesperilla cryptogramma (Meyrick & Lower, 1902) ssp. ‘Top End’</td>
<td>++</td>
</tr>
<tr>
<td>Borbo impar lavinia (Waterhouse, 1932)</td>
<td>++</td>
</tr>
<tr>
<td>Taractrocera dolon diomedes Waterhouse, 1933</td>
<td>+</td>
</tr>
<tr>
<td>Ocybadistes flavovittatus vesta (Waterhouse, 1932)</td>
<td>+</td>
</tr>
<tr>
<td>Ocybadistes walkeri olivia Waterhouse, 1933</td>
<td>+</td>
</tr>
<tr>
<td>Ocybadistes hypomeloma vaga (Waterhouse, 1932)</td>
<td>+</td>
</tr>
<tr>
<td>Suniana sunka sauda Waterhouse, 1937</td>
<td>++</td>
</tr>
<tr>
<td>Suniana lascivia lasus Waterhouse, 1937</td>
<td>++</td>
</tr>
<tr>
<td>Suniana lascivia larraea L. E. Couchman, 1951</td>
<td>+</td>
</tr>
<tr>
<td>Cephrenes augiades (C. Felder, 1860) ssp. ‘Top End’</td>
<td>++</td>
</tr>
<tr>
<td>Leptosia nina (Fabricius, 1793) ssp. ‘Kimberley’</td>
<td>++</td>
</tr>
<tr>
<td>Delias aestiva aestiva Butler, 1897</td>
<td>++</td>
</tr>
<tr>
<td>Delias argenthona fragalactea (Butler, 1869)</td>
<td>+</td>
</tr>
<tr>
<td>Libythea geoffroyi genia Waterhouse, 1938</td>
<td>+</td>
</tr>
<tr>
<td>Danaus genutia alexis (Waterhouse & Lyell, 1914)</td>
<td>+</td>
</tr>
<tr>
<td>Euploea sylvestra pelor Doubleday, 1847</td>
<td>+</td>
</tr>
<tr>
<td>Euploea darchia darchia W. S. Macleay, 1826</td>
<td>+</td>
</tr>
</tbody>
</table>
Distribution

The fourth question was to estimate how each species was distributed in space across the landscape and to determine whether there were congruent patterns in geographical range. The geographic range maps suggest there are at least 10 broad patterns (Maps 9a–h and 10a–h), which are briefly summarised as follows.

Very wide ranges

These species occur throughout all or most of the study region, from coastal areas of high rainfall to inland areas of low rainfall, and often extend to the arid areas of central Australia (Map 9a). They include *Papilio demoleus, Catopsilia pomona, C. scylla, Belenois java, Danaus petilia, Euploea corinna, Acraea andromacha, Hypolimnas bolina, Junonia villida, Ogyris zoisine, O. amaryllis, Theclinethes miskini, Nacaduba bicellata, Lampides boeticus, Zizina otis and Famegana alsulus.*

Wide ranges

These species are widely distributed throughout the Kimberley, Top End and western Gulf Country (Maps 9b and 9c). Two subgroups can be distinguished: 1) those that extend well into the semi-arid zone (< 500 mm mean annual rainfall), either permanently or on a seasonal basis (*Eurema berla, E. hecabe, Junonia orithya, Charaxes sempronius, Melanitis leda, Catopyrops florinda, Catohryops panormus, Zizeeria karsandra and Freyeria puti*) (Map 9b); and 2) those that are restricted to the higher rainfall areas, generally above 700 mm annually (*Hesperilla sexguttata, Pelopidas lyelli, Ocybadistes flavovittatus, Telicota colon, Cephenes trichopepla, Eurema laeta, Cepora perimale, Delias argentina, Tirumala hamata, Danaus affinis, Euploea sylvestris, Acraea terpicore, Junonia hedonia, Ypthima arctous, Candalides margarita, Jamides phaselis, Euchrysops cnejus and Zizula hylax*) (Map 9c).
Kimberley and Top End
These species are restricted to the Kimberley and Top End and fall into three subgroups (Maps 9d–f): 1) those that are distributed continuously between the two areas across the Ord Arid Intrusion and Victoria River Drainage Basin barrier (*Graphium eurypylus*, *Papilio fuscus*, *Telicota augias*, *Elodina walkeri*, *Hypocysta adiante*, *Arhopala eupolis*, *Anthene lycaenoides*, *Prosotas dubiosa* and *Comocrus behri*) (Map 9d); 2) those that have disjunct populations on either side of the barrier (*Cressida cressida*, *Chaetocneme denitza*, *Taractrocera dolon*, *Eurema alitha*, *Appias paulina*, *Euploea darchia*, *Liphyra brassolis*, *Hypolycaena phorbas*, *Everes lacturnus*, *Birthana cleis*, *Dysphania numana* and *Idalima leonora*) (Map 9e); and 3) those that have patchy and highly disjunct ranges in the two areas (*Petrelaea tombugensis*, *Taractrocera psammopetra* and *Radinocera sp. ‘Sandstone’*) (Map 9f).

Top End and western Gulf Country
These species are restricted to the Top End and western Gulf Country and include *Neohesperilla xiphiphora*, *Mycalesis perseus* and *Nesolycaena urumelia* (Map 9g).

Top End (broad ranges)
These species are restricted to the Top End, but have relatively wide ranges throughout all or most of the subregion and include *Neohesperilla crocea*, *Ocybadistes walkeri*, *Cethosia penthesilea*, *Hypolimnas alimena*, *Mydosama sirius*, *Arhopala micale*, *Deudorix smilis*, *Anthene seltuttus*, *Idalima metasticta* and *Cruria darwiniensis* (Map 9h).

Top End (narrow ranges)
These species are restricted to the Top End, but have fairly narrow ranges within the subregion. At least four subsets can be distinguished (Maps 10a–d): 1) those restricted to the northern half of the Top End (*Mesodina gracilima*, *Cephrenes augiades*, *Appias albina*, *Sahulana scintillata* and *Ctimene sp. ‘Top End’*) (Map 10a); 2) those restricted to the higher rainfall areas of the north-western corner of the Top End (*Hesperilla crypsigramma*, *Parnara amalia*, *Phalanta phalantha*, *Acrodips decima*, *Ogyris iphis*, *Nacudaba kurava*, *Idalima aethrius* and *Agarista agricola bifomis*) (Map 10b); 3) those restricted to the Arnhem Land Plateau (*Protographium leosthenes*, *Taractrocera ilia*, *Candalides geminus*, *Idalima sp. ‘Arnhem Land’* and *Hecatesia sp. ‘Arnhem Land’*) (Map 10c); and 4) those restricted to Gove Peninsula and adjacent islands (*Euploea alcathoe*, *Yoma sabina* and *Agarista agricola agricola*) (Map 10d).

Kimberley
These species are restricted to the Kimberley and include *Leptosa nina*, *Nesolycaena caesia*, *Synemon sp. ‘Kimberley’* and *Mimeusemia econia* (Map 10e).

Low rainfall areas
These species breed in areas with below 900 mm mean annual rainfall and occur predominantly in the Northern Deserts of the semi-arid zone (< 700 mm) (Maps 10f and 10g). They include species that are very widespread (*Catopsilia pyranthe*, *Eurema smilax*, *Elodina padusa*, *Candalides delospila* and *Synemon wulwulam*) (Map 10f) and those that apparently have more restricted ranges (*Ogyris barnardi*, *Jalmenus icilius*, *Synemon sp. ‘Roper River’* and *Hecatesia sp. ‘Amata’*) (Map 10g).

Coastal/estuarine areas
These species are restricted to coastal/estuarine areas and include *Hasora hurama*, *Delias aestiva*, *Hypochrysops apelles* and *Theclinesthes sulphius* (Map 10h).

Idiosyncratic ranges
These species show no apparent pattern, and include *Papilio aegerus*, *Libythea geoffroyi*, *Danaus genutia* and Genus 1 sp. ‘Sandstone’.
Map 9 Geographic ranges of butterflies and diurnal moths in the study region, showing examples of species
(a) very widely distributed (Catopsilia pomona); (b) widely distributed across the Kimberley, Top End and western Gulf Country, but also extending well into lower rainfall areas of the semi-arid zone (< 700 mm mean annual rainfall) (Eurema hecabe); (c) widely distributed across the Kimberley, Top End and western Gulf Country, but restricted to higher rainfall areas (> 700 mm) (Junonia hedonia); (d) restricted to the Kimberley and Top End, but distributed continuously between the two areas (Telicota augias); (e) restricted to the Kimberley and Top End, but with a disjunct distribution (Hypolycaena phorbas); (f) restricted to the Kimberley and Top End, but with a highly disjunct and limited range (Taractrocera psammopetra); (g) restricted to the Top End and western Gulf Country (Mycalesis perseus); (h) restricted to the Top End, but widespread in area (Mydosama sirius).

Source: Prepared by the authors.
3. Results and Discussion

Map 10 Geographic ranges of butterflies and diurnal moths in the study region, showing examples of species:

(a) restricted to the Top End, but limited to the northern half (Mesodina gracillima); (b) restricted to the Top End, but limited to the north-western corner (Idalima aethrias); (c) restricted to the Top End, but limited to or mainly limited to the Arnhem Land Plateau (Candalides geminus); (d) restricted to the Top End, but limited to Gove Peninsula (Euploea alcathoe); (e) restricted to the Kimberley (Leptosia nina); (f) restricted to low rainfall areas (< 900 mm mean annual rainfall), but widespread in area (Candalides delospila); (g) restricted to low rainfall areas of the semi-arid zone, but limited in range (Ogyris barnardi); (h) restricted to coastal/estuarine areas (Theclinesthes sulphius).

Source: Prepared by the authors.
Critical habitats and larval food plants

Of the 163 species recorded in the study region, 152 are resident or immigrant (see ‘Breeding status’ below). Of these resident and immigrant species, breeding habitats or suspected breeding habitats have been recorded for 141 (93 per cent). The 11 resident species for which the natural breeding habitat has not been recorded are: Papilio aegaeus, Acrodipsas myrmecophila, A. decima, Bindabara phocides, Sahulana scintillata, Synemon sp. ‘Kimberley’, Pollanisus sp. 7, Hestiochora xanthocoma, Euchromia creusa, Leucogonia cosmopis and Ipanica cornigera. Some species breed in only one type of habitat, particularly those with very specialised ecological requirements in which the larvae feed on just one plant species or genus, whereas others breed in several different types of habitat and may utilise many different kinds of plants.

Monsoon forest

More than 50 (31 per cent) species depend on various types of monsoon forest, of which 34 (21 per cent) are obligatorily restricted to these habitats in that they do not breed in other habitats. Among these monsoon forest specialists, at least one (Cephrenes augiades) is restricted to the wetter monsoon forests (i.e. evergreen monsoon vine forest) associated with permanent springs, creeks and other riparian areas, whereas 12 others occur only in drier monsoon forests (i.e. semi-deciduous monsoon vine thicket) on rocky outcrops, along seasonal gullies or on coastal laterite cliffs or dunes adjacent to the beach (Protographium leosthenes, Graphium eurypylus, Papilio fuscus, Badamia exclamationis, Hasora chromus, Leptosia nina, Elodina walkeri, Appias alkina, Libythea geoffroyi, Hypolycaena phorbas, Mimeusemia eonia and M. centralis). At least 14 species occur in both wet and dry monsoon forest (Telicota augsia, Appias paulina, Tirumala hamata, Phalanta phalantha, Euploea sylvestre, E. darchia, Cethosia penthesilea, Arhopala micale, Deudorix smilis, Anthene lycaenoides, Petrelaea tombugensis, Nataduba kurava, Citmene sp. ‘Top End’ and Dysphania numana), although in the wetter monsoon forests they usually breed only along the drier edges of the forest. Seven species breed only in light gaps within, or along the edge of, the rainforest, especially in the ecotone between monsoon forest and woodland (Suniana sunias, Euploea alcatheo, Yoma sabina, Hylopolimnas almena, Anthene seltuttus, Eupres lacturnus and Agarista agricola). These last mentioned species often also occur in mixed open forest with rainforest elements in the understorey, particularly in riparian areas.

Sixteen (10 per cent) species use monsoon forest facultatively—that is, they breed equally in both monsoon forest or mixed monsoon forest and savannah woodland (Neobesperilla crocea, Pelopidas lyelli, Taractrocera ina, Cephrenes trichopepla, Catopsilia scylla, Eurema alitha, E. becabe, Elodina padusa, Belenois java, Cepora perimale, Acraea andromacha, Charaxes sempronius, Melanitis leda, Candalides margarita, Prosotas dubiosa and Catopyrops florinda). A further nine that are more typical of savannah woodland also breed along the edges of monsoon forest (Telicota colon, Euploea corinna, Hypocysta adiante, Ypthima arctos, Arhopala eupolis, Candalides erinus, Jamides phaseli, Pseudoesia obertburi and Radinocera vagata).

Monsoon forests make up only a relatively small area (less than 1 per cent) of the landscape in the study region (Russell-Smith 1991; Russell-Smith and Bowman 1992; Russell-Smith et al. 1992), yet they support a disproportionally high number of butterfly and diurnal moth species (21–31 per cent), highlighting the high biodiversity value of this habitat type. These findings parallel similar trends for plants (Woinarski et al. 2005), but contrast markedly with those for ants (Andersen and Reichel 1994; Reichel and Andersen 1996; Andersen et al. 2006, 2007b). Interestingly, despite the high proportion of rainforest specialists, few taxa appear to be endemic to monsoon forests—a pattern also evident in ants (Reichel and Andersen 1996). Of the 34 taxa obligatorily associated with monsoon forest, only one species (Citmene sp. ‘Top End’) and 16 subspecies (Protographium leosthenes geimbia, Graphium eurypylus nycticus, Papilio
ficus canopus, Suniana sunias sauda, Cephrenes augiades ssp. ‘Top End’, Leptosia nina ssp. ‘Kimberley’, Libythea geoffroyi genia, Euploea sylvestre pelor, E. darchia darchia, E. alcaithoe enastri, Phalantra phalantha araca, Hypolimnas alimena darwiniensis, Arhopala micale ssp. ‘Top End’, Deudorix smilis dalyensis, Nacaduba kurava felsina and Agarista agricola biformis) are endemic to monsoon forests within the study region. Four monsoon forest specialists (Leptosia nina, Cethosia penthesilea, Phalantra phalantha and Deudorix smilis) represent the only known Australian occurrences of predominantly South-East Asian species. A fifth monsoon specialist, the predominantly South-East Asian species.

Savannah woodland

At least 88 (54 per cent) species occur in savannah woodland, but a number of these breed in other habitats. About 60 (37 per cent) species are found only in savannah woodland in the broad sense—that is, eucalypt heathy woodland, open woodland, Acacia woodland, riparian woodland and tropical grassland. Some of these species favour open disturbed areas for breeding (Papilio demoleus, AcrAEA terpsicore, Hypolimnas bolina, H. misippus, Theclinesthes miskin, Lampides boeticus, Zizeeria karsandra, Euchrysops cinus, Freyeria putli and Periopta diversa). Eleven of these savannah species are restricted to habitats associated with laterite or sandstone outcrops or sandy soils derived from sandstone/laterite, often with a heathy understorey or a hummock (spinifex) grass understorey (Hesperilla crypsigramma, Mesodina gracillima, Proeidosa polysem, Candalides geminus, C. delospila, Nesolycaena urumelia, N. caesia, Genus 1 sp. ‘Sandstone’, Idalima sp. ‘Arnhem Land’, Hecatesia sp. ‘Arnhem Land’ and Hecatesia sp. ‘Amata’).

Other habitats

At least nine species are regularly associated with paperbark woodland, paperbark swampland or mixed paperbark–pandanus swampland and other damp areas (Hesperilla sexguttata, Parnara amalia, Suniana lascivia, Danaus affinis, D. genutia, Junonia hedonia, Mydosama sirius, Zizula hylax and Cruria darwiniensis)—often adjacent to evergreen monsoon vine forest. Another species (Borbo impar) inhabits floodplain wetlands and swamps where the native larval food plant grows in standing water, and at least three others (Papilio demoleus, Junonia hedonia and Mydosama sirius) breed along the margins of these habitats; most of these species also breed in other habitats. Three species are restricted to the taller closed forest mangrove communities in the Top End (Hasora hurama, Delias aestiva and Hypochrysops apelles). Interestingly, on Cape York Peninsula, these species (or their nearest relatives) are typically associated with tropical forest, and Braby (2012c) hypothesised that historical contraction of rainforest habitat in the Top End during periods of aridification in the Miocene–Pleistocene may have led to pronounced habitat/food plant shifts, ultimately contributing to the evolution and adaptation of these insects to nonrainforest habitats, such as mangroves.

Other species occur in very specialised habitats. For example, Radinocera sp. ‘Sandstone’ breeds only on its food plant growing among foot-slope boulders at the base of sandstone escarpments. Open sandstone pavements, rock ledges and the base of rock overhangs are interesting habitats because they support ‘resurrection’ grasses (Micrinia spp.), the only plant genus that has adapted and radiated to any extent in this very specialised habitat (Lazarides 2005); in turn, these grasses support two ecologically specialised butterflies endemic to the study region (Taractrocera ilia and T. psammopetra) (Braby and Zwick 2015). Theclinesthes sulphius is the only species that breeds in coastal saltmarsh—a specialised habitat that is highly saline and periodically inundated by incoming tides.

Larval food plants

A complete list of known and putative larval food plants is provided in Appendix I. A total of 373 known butterfly/diurnal moth–plant associations, and a further 55 putative associations that require confirmation, have been recorded from the study region.
The putative associations are based on records from adjacent areas (e.g. Queensland), on the spatial distribution of the relevant species or on other evidence (e.g. female pre-oviposition behaviour) within the study region.

While larval food plants have been recorded for most species in the study region, data are still lacking for 26 species, and for nine species only fragmentary information, such as associations with introduced weedy taxa, is available. Notable taxa for which there are currently no published native food plant associations are the grass-feeding hesperiids, satyrines and sun-moths (*Neohesperilla senta*, *N. crocea*, *N. xanthomera*, *Parnara amalia*, *Borbo cinnara*, *Taraecrocerca dolon*, *Ocybadistes flavovittata*, *O. walkeri*, *O. hypomeloma*, *Suniuna suinias*, *Mycalesis perseus*, *Ypthima arctous* and *Synemon* sp. ‘Kimberley’), the legume-feeding pierids and lycaenids (*Catopsilia pyranthe*, *C. pomona*, *Eurema laeta*, *E. smilax*, *Zizina otis*, *Zizula hylax* and *Everes lacturnus*), three nymphalids (*Danaus chrysippus*, *Junonia villida* and *Hypolimnas bolina*), several other lycaenids (*Bindahara phocides*, *Petrelaea tombugensis* and *Sahulana scintillata*) and a number of diurnal moths (*Pollanisus* sp. 7, *Hestiochora xanthocoma*, *Ctimene* sp. ‘Top End’, *Euchromia creusa*, *Genus 1 sp. ‘Sandstone’, *Leucogonia cosmopis*, *Ipanica cornigera*, *Mimeusemia econia* and *M. centralis*).

Patterns of breeding and seasonal abundance

Breeding status

Of the 166 taxa, 151 (91 per cent) are resident within the study region (i.e. breeding regularly, with permanently established populations), three (2 per cent) are immigrant (i.e. breeding irregularly, with temporary populations) and 12 (7 per cent) are vagrant or infrequent visitors (i.e. not breeding, with non-resident populations). The three immigrants are *Badamia exclamationis*, *Nacaduba biocellata* and *Lampides boeticus*, and these species appear to enter and vacate the study region on a seasonal basis. The 12 vagrant or infrequent visitor taxa are listed in Table 6. These species rarely enter the study region—and usually in very small numbers—or they may enter on a more regular basis. Two of these species (*Borbo cinnara* and *Danaus chrysippus*) may actually be rare immigrants in that breeding possibly occurs, but the colonising populations are temporary and they fail to establish permanently; however, only circumstantial evidence is currently available on the breeding status of these species. The majority of the vagrant or infrequent visitor species belong to the family Nymphalidae (Table 6).

Table 6 List of taxa that are vagrants and/or infrequent visitors

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borbo cinnara (Wallace, 1866)</td>
<td>Rice Swift</td>
<td>Hesperiidae</td>
</tr>
<tr>
<td>Eurema brigitta australis (Wallace, 1867)</td>
<td>No-brand Grass-yellow</td>
<td>Pieridae</td>
</tr>
<tr>
<td>Appias albina infuscata Fruhstorfer, 1910</td>
<td>White Albatross</td>
<td>Pieridae</td>
</tr>
<tr>
<td>Dellas mysis mysis (Fabricius, 1775)</td>
<td>Red-banded Jezebel</td>
<td>Pieridae</td>
</tr>
<tr>
<td>Danaus chrysippus cratippus (C. Felder, 1860)</td>
<td>Plain Tiger</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Danaus plexippus (Linnaeus, 1758)</td>
<td>Monarch</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Euploea climena macleari Butler, 1887</td>
<td>Climena Crow</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Vanessa kershawi (McCoy, 1868)</td>
<td>Australian Painted Lady</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Vanessa itea (Fabricius, 1775)</td>
<td>Yellow Admiral</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Junonia ergione (Cramer, [1775])</td>
<td>Northern Argus</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Hypolimnas anomala albula (Wallace, 1869)</td>
<td>Crow Eggfly</td>
<td>Nymphalidae</td>
</tr>
<tr>
<td>Alcides metaurus (Hopffer, 1856)</td>
<td>Zodiac Moth</td>
<td>Uranidae</td>
</tr>
</tbody>
</table>

Note: These taxa probably do not breed in the study region (i.e. are non-resident).
Seasonality

A summary of the monthly incidence of the resident and immigrant species in the study region is shown in Figure 4. Although the phenology data for some species are incomplete or based on limited sampling, available records suggest a seasonal component in species richness. Species richness is apparently highest during the mid to late wet season (January–April), with a peak in February, steadily declining as the dry season progresses and is lowest in the late dry season (September), before increasing slightly during the ‘build-up’ (October–December). Although many species (at least 64) have been recorded in every month of the year, some are strictly seasonal and appear for just a few months (see below). For example, many species of Hesperiidae and most Agaristinae fly mainly during the wet season, but a few Lycaenidae and Castniidae occur predominantly during the dry season (Acrodipsas myrmecophila, Ogyris barnardi, Sahulana scintillata, Theclinesthes albocinctus, Synemon wulwulam and Synemon sp. ‘Roper River’).

Available data on the breeding phenology (i.e. temporal incidence of the immature stages) and seasonal abundance of adults indicate that about half of the region’s species breed, or are suspected to breed, continuously throughout the year, whereas the other half breed seasonally. The continuous breeders have multiple generations during the year and they achieve this in one of several ways. First, some species specialise on larval food plants that are perennial and thus available all year round (e.g. non-deciduous vines, mistletoes, palms or grasses that grow where conditions are permanently moist and buffered from climatic extremes). Second, other species (e.g. some lycaenids) feed on a range of plants, but switch their food plants on a seasonal basis according to the availability of new leaf shoots, flowers or fruits. Some ecologically specialised species (e.g. Hasora hurama, H. chromus and Deudorix smilis) that feed only on a single plant species have a similar strategy but appear to switch between individual plants that are seasonally available. Third, a strategy adopted by some species (e.g. several satyrines and Acraea spp.) is to breed throughout the year, but as the dry season progresses their reproductive activity declines and/or they contract to moist refuges. Fourth, at least four species (Eurema smilax, E. hecabe, Belenois java and Zizeeria karsandra) are highly nomadic and/or migratory, with populations shifting across a wide area within the study region, presumably tracking resources that are ephemeral or unpredictable in space and time. Several other highly mobile species (e.g. Papilio demoleus and Catopsilia spp.) may adopt this strategy, but it is not clear whether they breed all year round. Another—and perhaps the most bizarre—tactic of a continuous breeder is displayed by Taractrocera ilia (Braby and Zwick 2015). The adults emerge and fly all year round, but the larvae (all instars) enter diapause during the dry season when their food...
plants (resurrection grasses) become completely desiccated. However, diapause in final instar larvae is frequently terminated before the onset of the wet season such that the larvae pupate and emerge as adults shortly afterwards in the mid to late dry season. These adults then mate and the females lay eggs on the dry plants; the eggs develop and hatch soon after, but the first instar larvae then enter diapause.

Species that breed seasonally usually have only one or a few generations annually, or one generation followed by a partial second generation. The larvae of these species generally specialise on plants that are either short-lived annuals or seasonal perennials (e.g. deciduous vines) or they exploit plant parts (e.g. new leaf shoots) that are only available for a few months of the year, typically during the wet season.

We identified at least four strategies. First, several grass-feeding hesperiids (e.g. *Taractrocera* spp., *Neohesperilla* spp. and *Proeidosa polysema*) and possibly a few lycaenids (e.g. *Zizula hylax*, *Everes lacturnus*, *Euchrysops cnejus* and *Freyeria putli*) remain, or are suspected to remain, in larval diapause. Second, several swallowtails (e.g. *Protographium leosthenes*, *Graphium eurypylus* and *Papilio fuscus*), at least two lycaenids (*Nesolycaena urumelia* and *N. caesia*) and most of the agaristine moths remain in pupal diapause, often for many months or even years. The agaristines typically pupate underground or deep under bark at the base of tree trunks, where they are also protected from dry season fires. Four other species (*Appias albina*, *Delias aestiva*, *Cethosia penthesilea* and *Phalanta phalantha*) are suspected to have capacity for pupal diapause during periods of food shortfall, but to our knowledge this has not been confirmed. Third, a number of pierids (e.g. *Catopsilia pomona*, *Euera laeta* and *E. herla*) and nymphalids (most danaines, *Junonia* spp., *Yoma sabina*, *Hypolimnas* spp., *Melanitis leda* and *Mycalesis perseus*) remain, or are suspected to remain, in adult reproductive diapause. The adults of these species contract to moist refuges, where they remain relatively inactive for many months, sometimes in immense numbers (e.g. *Euploea corinna*). Finally, three immigrant species (*Badamia exclamationis*, *Nacaduba biocellata* and *Lampides boeticus*) enter the study region on a seasonal basis and appear to breed only for a short period before vacating.

Although some caution must be exercised when interpreting patterns of seasonal changes in relative abundance based on collection and observation records, our data suggest that, where sufficient records are available, at least six broad patterns may be discerned (Figures 5a–h), as follows.

Early wet season

These species peak in adult abundance during the ‘build-up’ of the early wet season when conditions are very humid and hot—typically in November and December, but sometimes in late October or early January, depending on the arrival of the pre-monsoon storms (Figure 5a). All of these species are seasonal breeders and include three swallowtails (*Protographium leosthenes*, *Graphium eurypylus* and *Papilio fuscus*), several agaristines (*Periopta* spp., *Radiocera* spp., *Idalima* spp. and *Cruria donowani*) and the undescribed noctuid Genus 1 sp. ‘Sandstone’.

Mid wet season

These species peak in adult abundance during the monsoon rains of the mid wet season—typically in January and February, but sometimes in late December or early March, depending on the timing of the monsoon(s) (Figures 5b and 5c). Continuous breeders that show this pattern are *Hasora chromus*, *Taractrocera ilia*, *Telicota augias*, *Appias paulina* and *Acraea terpsicore*. Seasonal breeders that show this pattern include *Badamia exclamationis*, *Taractrocera ina*, *Neohesperilla xiphiphora*, *Appias albina*, *Synemon phaeoptila* and *Ipanica cornigera*.

Late wet season – early dry season

These species peak in adult abundance during the late wet season and/or early dry season (March–May) (Figures 5d and 5e). A large number of species show this pattern,
Figure 5 Seasonal variation in adult abundance of butterflies and diurnal moths in the study region, showing examples of species peaking at different times of the year (a) early wet season (*Radinocera vagata*, a seasonal breeder); (b, c) mid wet season (*Telicota augias*, a continuous breeder, and *Taractrocera ina*, a seasonal breeder); (d, e) late wet season – early dry season (*Eurema alitha*, a continuous breeder, and *Freyeria putli*, a seasonal breeder); (f, g) mid dry season (*Acraea andromacha*, a continuous breeder, and *Nacaduba biocellata*, a seasonal breeder); (h) late dry season (*Ogyris amaryllis*, a continuous breeder).

Note: The relative abundance of each species (per cent) is based on the number of temporal records, defined as the occurrence on a particular date (time) at a given site (space), for the study region.
including both continuous breeders or likely continuous breeders (e.g. Papilio demoleus, Cressida cressida, Borbo impar, Parnara amalia, Pelopidas lyelli, Ocybadistes flavovittatus, Télicota colon, Cephres trichopepla, Catopsilia pyrante, C. scylla, Eurema alitha, E. hecabe, Cepora perimale, Mydosama sirius, Catochrysops panormus, Jamides phaseli, Famegana alsulus, Zizina otis and Zizeeria karsandra) and seasonal or putative seasonal breeders (e.g. Hesperilla crypsigramma, Taractrocera anisomorpha, T. dolon, Eurema herla, Lybythea geoffroyi, Junonia villida, J. orithya, Hypolimnas misippus, H. bolina, Melanitis leda, Nesolycaena urumelia, Euphyes lacturnus, Euchrysops eneyus, Freyeria puti and Synemon wulwulam).

Mid dry season
These species peak in adult abundance during the mid dry season (May/June and July), when conditions are dry and cool, especially at night (Figures 5f and 5g). This group includes both continuous or putative continuous breeders (e.g. Ocybadistes walkerii, Suniana spp., Eurema smilax, Elodina padusa, Acraea andromacha, Ypthima arctous, Arhopala micale, Deudorix smilis, Candalides margarita, C. erinus and Catopyrops florinda) and seasonal breeders (e.g. Eurema laeta, Delias aestiva, Cethosia penthesilea, Junonia bedonia, Mycalesis perseus, Sahulana scintillata, Nacaduba biocellata, Zizula hylax and Lampsides boeticus).

Late dry season
These species peak in adult abundance during the late dry season (August–October) (Figure 5h). All of these species are continuous breeders and include Belenois java, Charaxes sempronius and several taxa associated with mistletoes (Delias argenthona, Ogyris spp. and Comocurus behri).

Nonseasonal
These species show little seasonal variation in abundance or no clear or consistent pattern throughout the year (e.g. Catopsilia pomona, Elodina walkerii, Tirumala hamata, Danaus affinis, Euploea sylvestor, E. darchia, Hypolimnas alimena, Liphyra brasolis, Arhopala eupolis, Hypochrysops ignitus, Anthene selttus, A. lycaenoides and Dyxyphia numana).

Conservation status
Of the 166 taxa assessed for their conservation status according to the IUCN Red List criteria, 14 were ranked as Not Applicable (NA) and therefore were not evaluated. For the remaining 152 taxa, the data for 16 were inadequate to make an evaluation on the extent of extinction risk and thus were categorised as Data Deficient (DD). For the 136 taxa for which there were adequate data, one species was ranked as Vulnerable (VU), four as Near Threatened (NT) and 131 were assessed as Least Concern (LC) (Table 7). No species from the study region are known to have become extinct since European settlement, although one species (Pollanisus sp. 7) has not been detected since it was first recorded 110 years ago. However, the paucity of records of Pollanisus sp. 7 probably reflects a combination of lack of targeted survey, seasonality, likely occurrence in remote areas and the inconspicuous nature of adults of this species. The putative larval food plant (Pipturus argentus) occurs mainly in eastern Arnhem Land, with a very sporadic occurrence closer to Darwin, in the Northern Territory.

The threatened (VU), Near Threatened (NT) and DD taxa are also listed in Appendix II, which provides a summary of the criteria, justifications and actions needed. The taxa of most conservation concern are Ogyris iphis doddi, Euploea alcathoe enastri, Hypochrysops apelles spp. ‘Top End’, Idalima sp. ‘Arnhem Land’ and Hecatesia sp. ‘Arnhem Land’—all of which are endemic to the Top End. However, at least nine of the DD species (Hesperilla crypsigramma spp. ‘Top End’, Suniana lascivia lasus, Acrodipsas mymecophilus, A. decima, Ogyris barnardi barnardi, Nesolycaena caesia, Theclinesthes albocinctus, Pollanisus sp. 7 and Agarista agricola agricola) are of conservation interest because they may qualify as Near Threatened (NT) once adequate data are available. That is, these taxa are possibly threatened (Appendix II).
Very few species have restricted distributions (Appendix II). Of the 34 resident and immigrant taxa identified as having small geographic range sizes (< 40,000 sq km), nine (Protographium leosthenes geimbia, Taractrocera ilia, Leptosia nina, Hypochrysops apelles, Ogyris barnardi barnardi, Euploea alcathoe enastri, Yoma sabina, Nesolycaena caesia, and Agarista agricola biformis) had an estimated EOO of less than the threshold of 20,000 sq km to qualify for a possible Red List category under criterion B1. A further 17 taxa (Badamia exclamationis, Hesperilla crypsigramma, Suniana lascivia lasus, Acrodipsas myrmecophila, A. decima, Ogyris barnardi barnardi, Blindahara phocides, Nesolycaena caesia, Petrelaea tombugensis, Theclinesthes alboincus, Synemon sp. ‘Kimberley’, Pollanisus sp. 7, Euchromia creusa, Mimeusemia econia, M. centralis, and Agarista agricola agricola) are known only from one or two spatial records or breeding sites (i.e. their AOO is likely to be < 2,000 sq km) and thus they may qualify for a Red List category under criterion B2. However, most of these taxa were evaluated to be LC or DD when two of three other subcriteria were considered—specifically, the number of locations and evidence of decline (Appendix II).

In terms of representation in the NRS, most taxa are adequately represented to varying degrees. However, 14 taxa are poorly represented in the conservation reserve system: Suniana lascivia lasus, Acrodipsas myrmecophila, A. decima, Ogyris barnardi barnardi, Jalmenus icilius and Theclinesthes alboincus are currently not known to be represented in any conservation reserve. Ogyris oroetes oroetes, O. iphis doddi, Nesolycaena caesia, Petrelaea tombugensis, Nacaduba kurava felsina, Theclinesthes sulpiitus, Synemon sp. ‘Roper River’ and Agarista agricola agricola, which have been recorded from two or more locations, are each currently known from only a single conservation reserve. Of these 14 taxa, four (Ogyris barnardi barnardi, O. oroetes oroetes, Jalmenus icilius and Synemon sp. ‘Roper River’) occur predominantly in the semi-arid zone (in Acacia low open woodland or eucalypt open woodland habitats) of the Northern Deserts and western Gulf Country, while two (Suniana lascivia lasus and Ogyris iphis doddi) occur on the Tiwi Islands.
Overall, our assessment indicates that the fauna is in reasonably good health; no species are known to have become extinct and there are few threatened taxa. The relatively low frequency of threatened taxa in large part reflects two standout features of northern Australia: 1) the landscapes it supports are still relatively intact; and 2) many species have large geographic range sizes across the study region, particularly those associated with savannah woodland. Although the region is not immune from threats, the geographic ranges of most species are large enough to buffer against local impacts. However, as Woinarski et al. (2005) point out, having species with such widespread distributions over a relatively uniform landscape does not necessarily imply that loss of any local area/population may be inconsequential. Many of the ecological processes underpinning the health and heterogeneity of the landscape, such as fire and flooding, must also operate over vast areas, such that loss of a subset of the range and disruption of natural processes may have far-reaching (and unforeseen) consequences.

For species that have relatively small geographic range sizes, the key threatening process likely to adversely affect butterfly populations at present is decline of ecological resources (larval food plants and/or habitat) through inappropriate fire regimes, especially an increase in the frequency and extent of dry season burns. At present, the fire frequency in many tropical savannahs of northern Australia, particularly in the higher rainfall areas, is far too frequent, such that relatively long unburnt habitat (more than five years) is now rare in the landscape (less than 3 per cent of the total area) (Andersen et al. 2005, 2012; Russell-Smith and Yates 2007). Habitat loss and fragmentation are also a concern, particularly for *Ogyris iphis doddi* and *Hypochrysops apelles* ssp. ‘Arnhem Land’. However, other threats may become significant in future, such as the ongoing invasion of grassy weeds—particularly gamba grass (*Andropogon gayanus*) and mission grasses (*Cenchrus pedicellatus* and *C. polystachios*)—and the concomitant grass–fire cycle (Rossiter et al. 2003; Douglas and Setterfield 2005; Setterfield et al. 2010, 2013), especially for specialist species inhabiting savannah woodland, riparian woodland/open forest and the edges of riparian monsoon forest. The African gamba grass currently poses the greatest invasion threat due to substantial changes in community structure, fuel loads and impacts on fire regimes, and has been listed as a key threatening process under Commonwealth legislation. Habitat loss due to the expanding pastoral, agricultural/horticultural and mining industries is likely to have a detrimental effect on savannah woodland specialists in future (Garnett et al. 2010), and impacts on butterfly populations (their abundance and/or occupancy) will need to be carefully monitored. The long-term viability of patches of monsoon forest and the disproportionately rich butterfly assemblages they support may ultimately depend on reducing the frequency and intensity of fire in the surrounding matrix (Bowman 2000), as well as maintaining connectivity; any loss or decline of essential pollinators and seed dispersers or impediments that reduce their ability to move effectively between patches may have detrimental consequences (Russell-Smith and Bowman 1992).

The effects of global climate change and the response or resilience of tropical butterflies to such change are presently unclear. Predictions are that atmospheric carbon dioxide concentrations will continue to increase, leading to promotion of woody vegetation (monsoon forest) over grass (savannah woodland); sea level will rise, which will most likely impact the extent of coastal floodplains; and cyclones will become more intense, which will likely render patches of monsoon forest more susceptible to weed invasion. The impacts of increased temperature and rainfall, however, are less certain (Garnett et al. 2010). The recent catastrophic loss of large areas of mangrove communities in the Gulf of Carpentaria—due possibly to a combination of above-average temperatures and successive poor wet seasons—is indicative of the rapid and extensive environmental change that may be triggered more frequently in the future by escalating global climate change.
Collectively, the Kimberley, Top End, Northern Deserts and western Gulf Country make up a vast and remote area of tropical northern Australia (about 16 per cent of the continent). Until now, this region was arguably the most poorly known area of the Australian continent for butterflies and diurnal moths in terms of basic natural history. Thus, a major goal of this atlas was to address this knowledge gap by compiling a detailed inventory of the species known to occur in the region based on review of the scientific literature, examination of material in museum collections, field surveys and incidental observations.

Our data indicate that 166 taxa representing 163 species (132 butterflies and 31 diurnal moths) have been recorded from the study region, of which 151 (91 per cent) are resident, three (2 per cent) are immigrant and 12 (7 per cent) are vagrant or infrequent visitors. Overall, the fauna has a relatively low level of endemism: 17 species (10 per cent, including seven undescribed diurnal moths) and 35 subspecies (21 per cent, including six undescribed butterflies) are endemic to the region. Most of the endemic species are restricted to the higher rainfall areas of the Top End, or the Top End and northern Kimberley, where they occur predominantly in savannah landscapes, especially woodland or open woodland associated with sandstone. Within the study region, the Top End is substantially richer than the other subregions, with 150 species (93 per cent of the total fauna), compared with the Kimberley (105 species), western Gulf Country (82 species) and Northern Deserts (53 species). These broad patterns of species richness and endemism suggest the Top End has been important in the evolution and historical assembly of the butterfly and diurnal moth fauna.

Within the Top End, available data indicate the north-western corner, which includes the Arnhem Land Plateau, is a biodiversity ‘hotspot’ based on the concentration of mesic-adapted taxa or lineages with restricted geographic ranges. The Arnhem Land Plateau supports five taxa (*Taractrocera ilia*, *Protographium leosthenes geimbia*, *Candalides geminus gagadju*, *Idalima* sp. ‘Arnhem Land’ and *Hecatesia* sp. ‘Arnhem Land’) that are endemic to it, plus a further two species (*Taractrocera psammopetra* and *Radinocera* sp. ‘Sandstone’) that occur elsewhere only in the northern Kimberley. All of these endemics are associated with sandstone plateaus and escarpments. Further analysis of fine-scale distribution patterns and population genetics (phylogeographic structure) is needed to determine whether putative biodiversity hotspots occur elsewhere within the Top End and Kimberley. These hotspots are likely to coincide with evolutionary refugia, enabling species to persist during past (and potentially future) climatic extremes, and thus represent...
important areas for biodiversity conservation (Pepper and Keogh 2014; Rosauer et al. 2016; Oliver et al. 2017).

Monsoon forests comprise a very small fraction (less than 1 per cent) of the landscape in the study region, yet they support a disproportionately high number of butterfly and diurnal moth species. More than 50 species (31 per cent) breed, or are suspected to breed, in various types of monsoon forest, and 34 (21 per cent) of these species are obligatorily dependent on these habitats, in that they do not breed in other habitats. Interestingly, despite the high proportion of monsoon forest specialists, few of these taxa are actually endemic to the study region; only one species (Ctimene sp. “Top End”) and 16 subspecies are endemic to northern Australia. Four of these monsoon forest specialists (Leptosia nina, Cethosia penthesilea, Phalanta phalantha and Deudorix smilis) represent the only known Australian occurrences of species that are predominantly distributed in South-East Asia. A fifth monsoon specialist, the predominantly South-East Asian pierid Appias albina, also has its main occurrence within Australia in the study region. In addition, several species (particularly Danainae) use monsoon forest as refuges during the dry season, further highlighting the high biodiversity value of this habitat type.

Northern Australia is one of the few tropical places left on Earth in which biodiversity and the ecological processes underpinning that biodiversity are still relatively intact. Yet, paradoxically, at a time when the region is under increasing threat from development (pastoral, agricultural/horticultural and mining industries), invasive species (feral animals and weeds), inappropriate fire regimes (especially an increase in the frequency and scale of fires) and climate change (especially elevated carbon dioxide levels), scientific knowledge of the invertebrate biodiversity is still in its infancy. Even for a popular insect group such as butterflies and diurnal moths, there are still, for some species, substantial knowledge gaps in taxonomic status, spatial distribution and ecology, such as larval food plant associations. It is hoped this work—particularly the geographic range maps, relative abundance charts and conservation status assessments—will not only provide the foundation for further research, but also provide the baseline against which the extent and direction of change can be assessed in future. It should also serve to help identify the region’s biological assets to set priorities for biodiversity conservation. The fact that 79 per cent of the butterfly and diurnal moth fauna is presently evaluated as LC is encouraging; it tells us not only that the fauna is in relatively good health, but also what stands to be lost if the north is opened up for wholesale development.

While the fauna, overall, may be considered to be in reasonably good condition, with more than three-quarters of the species presently secure (LC), the need for further survey and monitoring will be crucial to reevaluate the conservation status of those species that are threatened (VU), Near Threatened (NT) or Data Deficient (DD), as well as those that are currently inadequately represented in the National Reserve System. Further research on these species should focus on clarifying the extent of their geographic distribution, determining their ecological resources (e.g. larval food plants), monitoring adult abundance and occupancy of critical habitats and managing threats from fire, as well as determining any other key threatening processes. More generally, in addition to understanding broad-scale distributional patterns, there is a complementary need to understand abundance and population trends for the fauna as a whole. Long-term monitoring of butterfly populations (and/or their larval food plants) is needed to determine whether species are stable or declining, and to help identify threats and management priorities and their effectiveness. The impact on the butterfly and diurnal moth fauna as a whole from developmental and management processes such as fire management, the intensification of pastoralism and selective clearing of native vegetation from the most fertile and productive land systems should be assessed as a high priority.
Swallowtails
(Papilionidae)
Four-barred Swordtail, Kakadu Swordtail
Protographium leosthenes (Doubleday, 1846)

Distribution
This species is represented by the subspecies *P. leosthenes geimbia* (Tindale, 1927), which is endemic to the study region. It occurs in the Top End, where it is restricted to western Arnhem Land, extending from Ubirr Rock (A. Carlson) south to Deaf Adder Gorge (M. B. Malipatil) in Kakadu National Park, NT. Its geographic range closely corresponds with the spatial distribution of its larval food plant, which is also endemic to western Arnhem Land, although the food plant extends slightly further south (to the upper Gimbat Creek area). Outside the study region, *P. leosthenes* occurs in north-eastern and eastern Australia.

Habitat
Protographium leosthenes breeds in patches of monsoon vine thicket on sandstone escarpments in steep rocky hill-slopes and the base of rock overhangs and boulders where the larval food plant grows as a scrambling vine. Adults also fly in open woodland and males congregate on hilltops to locate females, but they do not breed in these habitats.

Larval food plant
Melodorum rupestre (Annonaceae).

Seasonality
Adults are seasonal, occurring from October to May. They are most abundant during the ‘build-up’ and early wet season (November–January), when humidity and temperatures are high before the onset of the first monsoon rains, when the larval food plant produces flushes of new leaf growth. The species breeds mainly during the pre-monsoon period, with the immature stages (eggs or larvae) found in December and January. There is possibly only a single generation in most years, with a partial second generation during the late wet season and early dry season (March–May), when some adults may emerge during or after the monsoon. The butterfly survives the long dry season in pupal diapause (Sands and New 2002)—a strategy also adopted by the nominate subspecies in Queensland.

Breeding status
This species is resident in the study region.

Conservation status
LC. The subspecies *P. leosthenes geimbia* is a short-range endemic (EOO = 1,700 sq km) and its entire range occurs in two conservation reserves: Kakadu National Park and Warddeken IPA. Despite its restricted occurrence, there are no known threats facing the taxon (Sands and New 2002). The larval food plant is currently listed as LC under the *Territory Parks and Wildlife Conservation Act* (2014) (*TPWCA*).
5. SWALLOWTAILS

Protographium leosthenes

- Specimen in 1970
- Observation in 1970
- Literature in 1970
- Literature in 1970
- Larval food plant

Protographium leosthenes

- Species record
- Geographic range
- Phytoecological boundary
- EBA bioregional boundary

Protographium leosthenes (n = 26)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)

Month
Pale Triangle

Graphium eurypylus (Linnaeus, 1758)

Habitat

Graphium eurypylus breeds mainly in semi-deciduous monsoon vine thicket and mixed eucalypt woodland–vine thicket in coastal, riparian and inland areas where the larval food plants grow, some as semi-deciduous shrubs or small trees. It also occurs in suburban parks and gardens where the ornamental food plants are propagated.

Larval food plants

Seasonality

Adults occur throughout the year, but they are more abundant during the wet season. They are particularly numerous during the ‘build-up’ and pre-monsoon storms of the early wet season (October–January), when the larval food plants start to produce new leaf growth. Adults are generally absent during the cooler dry season (May–August), although a few have been recorded at this time of year. Several generations are completed annually; the immature stages (eggs or larvae) have been recorded from September to April, indicating that breeding occurs over an extended period. The population survives the dry season in the pupal stage, which may remain in diapause for up to seven months. In the Darwin area, adults start to emerge in September or October following the first heavy downpours.

Breeding status

This species is resident in the study region. It is not known whether it migrates or disperses outside the normal breeding range.

Conservation status

LC.
Dainty Swallowtail
Papilio anactus W. S. Macleay, 1826

Larval food plants
Citrus sp. (Rutaceae). The native food plant has not been recorded in the study region, but in eastern Queensland the species is known to feed on various native species of *Citrus* (Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded during most months of the year, but there are too few records (n = 8) to assess any seasonal changes in abundance. Puccetti (1991: 144) noted: ‘This species has been common at times … the species appears to be well-established on local citrus’. Presumably, the species breeds throughout the year.

Breeding status
The breeding status of *P. anactus* is uncertain. It appears to be resident, but it is possible the species does not occur naturally in the region and is introduced, having become established recently with the cultivation of its ornamental larval food plant.

Conservation status
NA.

Distribution
This species has been recorded only from the western Gulf Country of the study region, at Doomadgee, Qld (Puccetti 1991). Outside the study region, *P. anactus* occurs widely in eastern and south-eastern Australia.

Habitat
Papilio anactus has been recorded only from urban areas where its non-native larval food plant is propagated in suburban gardens; it does not appear to be established in natural areas outside this habitat.

Plate 6 Mt Piper, Broadford, Vic
Photo: M. F. Braby

Map of Dainty Swallowtail Distribution

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td>Orange</td>
</tr>
</tbody>
</table>
Orchard Swallowtail
Papilio aegeus Donovan, 1805

Distribution
This species is represented in the study region by the subspecies _P. aegeus aegeus_ Donovan, 1805. It is restricted to eastern Arnhem Land (Wessel Islands, Gove Peninsula and Groote Eylandt, NT), Limmen Bight and the western Gulf Country, where it occurs sporadically in coastal and near-coastal areas. Despite the widespread distribution of its native larval food plant, _P. aegeus_ is not permanently established further west in the Top End. The species is normally absent from Kakadu National Park, NT, but a male was observed at West Alligator Head in March 1991 and sightings of a second male for several weeks were subsequently made at the same location (K. McLachlan); these records are considered to be vagrants from further east. Outside the study region, _P. aegeus_ occurs from Tanimbar, the Kai and Aru islands, through mainland New Guinea and adjacent islands and eastern Australia to the Bismarck Archipelago and the Santa Cruz Islands east of the Solomon Islands.

Excluded data
A previous record of _P. aegeus_ from Darwin, NT (Dunn and Dunn 1991), based on a pair of specimens collected in January 1978 by J. T. Moss, appears to represent an accidental introduction that failed to establish following Tropical Cyclone Tracy (Braby 2014a).

Habitat
Papilio aegeus breeds in urban areas where its non-native larval food plant is propagated in suburban gardens (Braby 2011a); however, the natural breeding habitat is not well documented. Fenner (1991) recorded _P. aegeus_ breeding on Marchinbar Island, NT, on the native food plant (_Micromelum minutum_), which, in coastal areas, typically grows in monsoon vine thicket on sand dunes and low lateritic cliffs above the beach. Males have been observed in savannah woodland, patrolling encounter sites to locate females.

Larval food plants
Micromelum minutum (Rutaceae); also *Citrus* sp. (Rutaceae).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded during most months of the year, usually in low numbers, but we have too few records (n = 16) to assess any seasonal changes in abundance. The immature stages (larvae or pupae) have been recorded during the dry season (July–September). Presumably, the species breeds throughout the year.
Breeding status
This species is resident in the study region. It is possible that *P. aegeus* does not occur naturally in the region, and has become established only within the past three decades, perhaps facilitated by the cultivation of its ornamental larval food plant in suburban areas on the mainland. The species did not become established on Gove Peninsula in northeastern Arnhem Land until about 2000 (Braby 2011a). The only record prior to 1986 is a historical specimen (in SAM) from the Roper River, NT, by N. B. Tindale.

Conservation status
LC. Although the species *P. aegeus* has a restricted range in the study region, there are no known threats facing the taxon.
Fuscous Swallowtail
Papilio fuscus Goeze, 1779

Distribution
This species is represented by the subspecies *P. fuscus canopus* Westwood, 1842, which is endemic to the study region. It occurs widely in coastal areas of the western and northern Kimberley and throughout the Top End, extending as far south as Judbarra/Gregory National Park (Limestone Gorge) (Braby and Archibald 2016), near Mataranka and Bing Bong, NT, in the Gulf of Carpentaria. Its geographic range closely corresponds with the spatial distribution of its native larval food plants. Outside the study region, *P. fuscus* occurs from the Andaman Islands, the Malay Peninsula and Indonesia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Solomon Islands and Vanuatu.

Habitat
Papilio fuscus breeds mainly in semi-deciduous monsoon vine thicket in both coastal and inland areas where the native larval food plants grow as tall shrubs (Hall 1976). It also occurs in suburban gardens where ornamental citrus trees are cultivated. Adults sometimes disperse into savannah woodland, but they do not breed in this habitat.

Larval food plants
Glycosmis trifoliata, *Micromelum minutum*, *Zanthoxylum parviflorum* (Rutaceae); also *Citrus* sp. (Rutaceae). The main food plants are *M. minutum* and *G. trifoliata* (Hall 1976; Meyer 1996a), but occasionally the species also breeds on *Z. parviflorum* (Braby 2015e) and cultivated *Citrus* (Braby 2011a).

Seasonality
Adults occur throughout the year, but they are most abundant during the pre-monsoon ‘build-up’ and throughout the wet season. Franklin (2011) found similar trends near Darwin, NT, in that adults were most abundant during the wet season, based on quantitative studies conducted over 14 months during 2008–09. Very few adults occur during the winter dry season (June–August), when the species does not breed and remains in pupal diapause. Hall (1976: 41) noted that ‘the pupal duration … is extremely variable, ranging from 14 days to a little over 24 months’. In the higher rainfall areas, the immature stages (eggs or larvae) have been recorded from October to June, indicating that breeding occurs over an extended period during which several generations are completed.

Breeding status
This species is resident in the study region.

Conservation status
LC.
5. SWALLOWTAILS

Papilio fuscus

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Papilio fuscus

- Species record
- Geographic range
- Phytoecological boundary
- IBRA bioregional boundary

Papilio fuscus (n = 232)

<table>
<thead>
<tr>
<th>Relative abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Month Table:

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Chequered Swallowtail

Papilio demoleus Linnaeus, 1758

Distribution

This species is represented in the study region by the subspecies *P. demoleus sthenelus* W. S. Macleay, 1826. It occurs throughout almost the entire region, extending from moist coastal areas to the arid zone of central Australia beyond the southern boundary of the study region. The broad geographic range closely corresponds with the spatial distribution of its larval food plants, of which two (*Cullen balsamicum* and *C. cinereum*) occur widely in the drier inland areas. There are no records of either the butterfly or the food plants from the Tiwi Islands, so *P. demoleus* may be absent from this area. Outside the study region, *P. demoleus* occurs widely from the Middle East, India, southern China and South-East Asia, through mainland New Guinea to Australia, where it occurs throughout the continent, as well as in the Dominican Republic, where it has been accidently introduced (Eastwood et al. 2006; Morgan and Wiemers 2012).

Habitat

Papilio demoleus breeds mainly in savannah woodland and open, low-lying grassy areas and floodplains where the larval food plants grow, either as perennial shrubs (*Cullen badocanum* and *C. balsamicum*) or as a seasonal annual (*C. cinereum*). Males also commonly fly on prominent hills, ridges and other landmarks, which are used as encounter sites to locate females for mating, but they do not breed in these habitats.

Larval food plants

Cullen badocanum, C. balsamicum, C. cinereum (Fabaceae).

Seasonality

Adults have been recorded throughout the year, but they are generally more abundant during the early dry season (April–June) following good wet seasons of average or above average rainfall. In some seasons or months, immense numbers of adults have been observed, particularly in semi-arid areas. The species becomes scarce as the dry season progresses, and there are very few records in the early wet season (November and December). The breeding phenology is not well understood. The immature stages have been recorded from February to June, which broadly coincides with the late wet season and early dry season and is when adults are more abundant, but it is not clear whether the species breeds at other times of the year. *Papilio demoleus* is a well-known migrant, but there are few published details of movement patterns (Smithers 1978). Smithers and McArtney (1970) recorded hundreds of specimens flying south-east over a distance of 25 km across the Stuart Highway between Elliott and Renner Springs, NT, in May 1969. In Darwin suburban and rural areas, a large-scale population movement, which lasted for about two weeks, was recorded in February 2015 (Braby 2016b). Adults flew rapidly between mid morning and mid afternoon, but the direction of flight progressively shifted from easterly, through southerly to westerly over the migration period.

Breeding status

This species is assumed to be resident in the study region, but populations appear to be nomadic and are possibly temporary in many areas.

Conservation status

LC.
Clearwing Swallowtail
Cressida cressida (Fabricius, 1775)

Habitat
Cressida cressida breeds in a variety of savannah woodland and eucalypt open woodland habitats where the larval food plants grow—typically as herbs or small vines in the ground layer.

Larval food plants
Aristolochia holtzei (Aristolochiaceae); also *A. indica; probably A. acuminata, A. pubera, A. thozetii*. On Groote Eylandt, Tindale (1923: 351) noted: 'The female was discovered laying eggs on one of the Aristolochia vines'. He listed the food plant as 'A. indica', but this record refers to either *A. pubera* or *A. thozetii*, both of which have been collected from the island. Meyer (1996a) listed the food plant from Channel Island near Darwin as *Aristolochia* sp. 'Channel Island', and this record now refers to *A. indica*, which appears to have been introduced to the island from Asia. The food plant in the western Kimberley is likely to be *A. acuminata*.

Seasonality
Adults have been recorded throughout the year, but they are generally more abundant during the wet season (January–April) and less common during the cooler dry season (May–August). We have few breeding records of this species, with the immature stages (eggs or larvae) recorded in February, June and November. Presumably, the species breeds throughout the year.

Breeding status
This species is resident in the study region, but it is not known whether it disperses outside the normal breeding range.

Conservation status
LC.
5. SWALLOWTAILS

Cressida cressida

- **Specimen ≥1970**
- **Observation ≥1970**
- **Literature ≥1970**
- **Specimen <1970**
- **Literature <1970**
- **Larval food plant**
- **Putative larval food plants**

Relative abundance (%)

- **Month**
 - J
 - F
 - M
 - A
 - M
 - J
 - J
 - A
 - S
 - O
 - N
 - D

Cressida cressida (n = 340)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Skippers
(Hesperiidae)
Narrow-winged Awl
Badamia exclamationis (Fabricius, 1775)

Distribution
This species is distributed widely throughout the study region. It is also recorded from remote areas offshore in the Timor Sea, including Ashmore Reef, WA (D. C. Binns). The breeding range is not well understood; the only documented breeding record is from the lower rainfall areas of the eastern Kimberley near Kununurra, WA (Meyer 1996a). Comparison of the geographic range with the spatial distribution of its known larval food plant indicates that *B. exclamationis* extends slightly further inland, with the food plant also widespread but restricted to coastal and near-coastal areas in which the mean annual rainfall is generally above 800 mm. It is not known whether other food plants are utilised throughout its broad range, but it is considered unlikely that *B. exclamationis* breeds in the drier inland areas (600–800 mm mean annual rainfall). Outside the study region, *B. exclamationis* occurs widely from India, southern China and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Solomon Islands, New Caledonia and Fiji.

Habitat
Badamia exclamationis has been recorded breeding in riparian monsoon vine thicket in the eastern Kimberley (at Black Rock Falls track near Kununurra, WA), where the larval food plant grew in abundance as a small tree (C. E. Meyer, pers. comm.).

Larval food plant
Terminalia microcarpa (Combretaceae).

Seasonality
Adults are seasonal, being most abundant during the pre-monsoon ‘build-up’ (October and November) and then again during the wet season (January–March). They are generally absent during the dry season (May–September). The breeding phenology is poorly known; the immature stages have been found only in December (C. E. Meyer). *Badamia exclamationis* is a well-known migrant (Smithers 1978; Common and Waterhouse 1981), but few details have been reported for northern Australia. On several occasions in the Top End, migratory flights comprising small to moderate numbers have been observed between late January and early April, particularly in March and early April (Braby 2016b). In general, adults fly rapidly between mid morning and early afternoon in a northerly direction (with the direction of flight varying from north-west, north–north-east to east–north-east). The only exception to this general pattern was a southerly flight (south–south-west) recorded in late January 2011, which suggests the arrival of an immigrant population. The timing of these migrations probably varies depending on the season and the start of the monsoon rains.

Breeding status
This species appears to be a regular immigrant in the study region, breeding temporarily during the wet season and then vacating before the onset of the dry.

Conservation status
DD. The geographical extent of the breeding habitat of *B. exclamationis* is very poorly understood, and it is currently known from only one site, but it may be very restricted—for example, confined to the lower rainfall areas of the monsoon tropics. Targeted field surveys to clarify the extent of the breeding distribution, determine its critical habitat and identify key threatening processes are required for this species.
6. SKIPPERS

Badamia exclamationis

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature ≤1970
- Larval food plant

Relative abundance (%)

- **Badamia exclamationis (n = 88)**

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Broad-banded Awl

Hasora hurama (Butler, 1870)

Habitat

Hasora hurama breeds in the edge of mangroves and mixed mangrove–monsoon forest associations along the banks of rivers and estuaries in floodplains where the larval food plant grows as a vine (Meyer et al. 2015).

Larval food plant

Derris trifoliata (Fabaceae).

Seasonality

Adults have been recorded, or reared, during most months of the year, except August, but we have too few records (n = 12) to assess any seasonal changes in abundance. Similarly, the immature stages have been recorded throughout the year. The larvae feed on new leaf growth and the life cycle is completed relatively quickly (within a few weeks), with no evidence of diapause in any of the life history stages (Meyer et al. 2015). This fact, together with available phenological data, suggests *H. hurama* breeds continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC. The subspecies *H. hurama territorialis* is a narrow-range endemic (geographic range = 28,050 sq km) and it occurs in several conservation reserves, including Fogg Dam Conservation Reserve, Djuhbunj National Park, Kakadu National Park and Djelk IPA.
Chrome Awl

Hasora chromus (Cramer, [1780])

Distribution

This species is represented in the study region by the subspecies *H. chromus chromus* (Cramer, [1780]). It occurs at Broome (G. Swann) and the eastern Kimberley (Williams 2014) in Western Australia, and the Victoria River District and the northern coastal and near-coastal areas of the Top End. However, the natural distribution of the larval food plant has a much narrower range, restricted to the north-western corner of the Top End, where it extends no further east than Cobourg Peninsula and as far south as Hardies Creek, NT (10 km north of Marrakai Plains). The food plant is often cultivated as an ornamental tree in parks and roadside nature strips, and this most likely accounts for the wider distribution of *H. chromus*. Indeed, this is certainly the case in the Victoria River District (Timber Creek, NT) and Kimberley (Broome, WA), where *H. chromus* has been found breeding only on planted street trees. There is little historical data for *H. chromus* in the Northern Territory; it was first recorded from Darwin by Waterhouse and Lyell (1914), but there are few other published records before 1970. Thus, it is difficult to determine how the geographic range has expanded during the past century. However, it is noteworthy that most of the peripheral records outside the natural range of the food plant—that is, Arnhem Land (Mann River crossing, 2005; Maningrida, 2007), Gove Peninsula (Nhulunbuy, 2008), Victoria River District (Timber Creek, 2013), eastern Kimberley (Home Valley Station, 2014) and western Kimberley (Broome, 2017)—are all within the past decade, suggesting the expansion may be recent. Moreover, the chronological records also suggest a progressive eastern expansion to Nhulunbuy and a similar south-western expansion to Broome. Outside the study region, *H. chromus* occurs widely from India, southern China and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern Australia to Vanuatu, New Caledonia and Fiji.

Habitat

Hasora chromus breeds naturally in coastal semi-deciduous monsoon vine thicket where the larval food plant grows as a tree on sand dunes or low lateritic cliffs above the beach.

Larval food plant

Millettia pinnata (Fabaceae).

Seasonality

Adults have been recorded during most months of the year, but they appear to be more abundant during the ‘build-up’ and wet season, when humidity is higher (October–March). The immature stages occur throughout the year, whenever the food plant produces flushes of new foliage. The larvae, like *Hasora hurama*, feed on new leaf growth and the life cycle is completed relatively quickly (within a few weeks), with no evidence of diapause in any of the life history stages. This fact, together with available phenological data, suggests *H. chromus* breeds continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC. Although the core area of the breeding range of *H. chromus* is narrowly restricted to the north-western corner of the Top End, its extent has now expanded well beyond this area.
Hasora chromus

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Literature ≥1970
- Larval food plant

Hasora chromus

- Species record
- Geographic range
- Phytogeographical boundary
- IBRA bioregional boundary

Hasora chromus (n = 32)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Ornate Dusk-flat
Chaetocneme denitza (Hewitson, 1867)

Distribution
This species has a sporadic and possibly disjunct distribution in the study region. It has been recorded from the Kimberley in the Buccaneer Archipelago at Koolan Island in Yampi Sound (Koch and van Ingen 1969; McKenzie et al. 1995) and Drysdale River Station (J. E. and A. Koeyers), WA; and across the Top End, generally in the higher rainfall areas (> 900 mm mean annual rainfall, but mostly > 1,200 mm). The distribution of the known larval food plant is much more widespread than that of *C. denitza*; thus, further field surveys are required to determine whether *C. denitza* extends further south into the lower rainfall areas of the Top End. Outside the study region, *C. denitza* occurs in north-eastern and eastern Australia.

Habitat
Chaetocneme denitza breeds in savannah woodland where the larval food plant commonly grows as a shrub or small tree (Braby 2011a). Freshly emerged adults have been collected in riparian woodland/open forest, suggesting they may also breed in this habitat.

Larval food plants
Planchonia careya (Lecythidaceae). A number of other food plants have been recorded for the species in north-eastern Queensland (Braby 2016a), some of which may be used by *C. denitza* in northern Australia.

Seasonality
The seasonal abundance and breeding phenology of this rarely seen crepuscular species are not well understood. Adults have been recorded during most months of the year, but we have too few records (n = 18) to assess any seasonal changes in abundance. The immature stages have been recorded from February to May, but undoubtedly occur at other times of the year. Presumably, the species breeds continuously throughout the year, with at least two or three generations completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Spotted Grass-skipper
Neohesperilla senta (Miskin, 1891)

Habitat

The breeding habitat of *N. senta* has not been recorded in the study region. Adults have been collected in savannah woodland and eucalypt woodland, often very locally in disturbed open grassy areas, and they undoubtedly breed in these habitats.

Larval food plants

Not recorded in the study region; probably *Themeda triandra* (Poaceae), which is the food plant in north-eastern Queensland (Braby 2000).

Seasonality

Adults are seasonal, occurring only during the wet season (December–March), but there are too few records (n = 14) to assess temporal changes in abundance. In general, adults tend to be more numerous and freshly emerged during January and February. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible there is only a single generation annually.

Breeding status

This species is resident in the study region.

Conservation status

LC. Available data suggest the species *N. senta* has a restricted range in the study region within which it occurs in at least two conservation reserves, Litchfield National Park and Garig Gunak Barlu National Park. Despite its restricted occurrence, there are no known threats facing the taxon.
Sword-brand Grass-skipper

Neohesperilla xiphiphora (Lower, 1911)

Distribution
This species occurs in the north of the Northern Territory of the study region. It has been recorded mainly from the higher rainfall areas (> 1,000 mm mean annual rainfall) of the north-western corner of the Top End, but it has also been recorded from Groote Eylandt (Common and Waterhouse 1981) and in the western Gulf Country, at Caranbirini Creek, NT (Dunn and Dunn 1991). Its geographic range corresponds well with the spatial distribution of its known and putative larval food plants. The food plants, however, are more widely distributed than *N. xiphiphora*, with records from the Victoria River District and Tiwi Islands. Further field surveys are thus required to determine whether *N. xiphiphora* is established in these areas, particularly the drier areas of the Victoria River District. Outside the study region, *N. xiphiphora* occurs in north-eastern Queensland.

Habitat
Neohesperilla xiphiphora breeds in savannah woodland and eucalypt woodland, particularly along the edges or bases of rocky outcrops, where the larval food plant grows as an annual grass in the open shaded understorey beneath eucalypt trees (Braby 2015e). Areas regenerating after dry season burns following wet season rains seem to be favoured for breeding. Males also congregate at the summit of steep hills, ridges and other landmarks, which are used as encounter sites to locate females for mating, but they do not breed in these habitats.

Larval food plants
Sorghum intrans (Poaceae); probably *Schizachyrium perplexum* (Poaceae), which is a food plant in north-eastern Queensland (Braby 2000).

Seasonality
Adults are seasonal, being most abundant during the wet season (December–March). The immature stages (eggs or larvae) have been recorded in February and March after the larval food plant has germinated and produced new soft leaf growth. The breeding phenology and seasonal history of the immature stages are not well understood, but it is possible there is only a single generation annually, with the final instar larvae remaining in diapause during the long dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Narrow-brand Grass-skipper
Neohesperilla crocea (Miskin, 1889)

Habitat
The breeding habitat of *N. crocea* has not been recorded in the study region. Adults have been collected mainly in moister habitats than those of other species of *Neohesperilla*, including the edges of riparian forest and monsoon vine thicket, eucalypt woodland with a monsoon forest understorey and paperbark swampland, as well as savanna woodland, and no doubt they breed in these habitats.

Larval food plants
Not recorded in the study region; probably *Chrysopogon aciculatus* and *Schizachyrium pachyarthron* (Poaceae), which are the food plants in north-eastern Queensland (Braby 2000).

Seasonality
Adults are seasonal, being most abundant during the wet season (December–April), with an apparent peak in abundance in March. The flight season is somewhat protracted compared with other species of *Neohesperilla*, with adults also occurring in the early dry season (May–July). The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible only one or two generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Neohesperilla crocea

- Specimen ±1970
- Observation ±1970
- Literature ±1970
- Specimen <1970
- Literature <1970
- Potentially larval food plants

Relative abundance (%)

- **Month:** J F M A M J J A S O N D

Neohesperilla crocea (n = 34)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Yellow Grass-skipper
Neohesperilla xanthomera (Meyrick & Lower, 1902)

Distribution
This species occurs in the north of the Northern Territory of the study region. It is restricted to the higher rainfall areas (> 1,000 mm mean annual rainfall, but mostly > 1,200 mm) of the north-western corner of the Top End. It has been recorded as far south as Daly River and as far east as Maningrida, NT (Braby 2000). Further field surveys are required to determine whether N. xanthomera occurs in the eastern half of the Top End, particularly in eastern Arnhem Land and the Limmen Bight area in the Gulf of Carpentaria. Outside the study region, N. xanthomera occurs in north-eastern and eastern Australia.

Habitat
The breeding habitat of N. xanthomera has not been recorded in the study region. Adults have been collected mainly in savannah woodland and they undoubtedly breed in this habitat.

Larval food plants
Not recorded in the study region. The food plants in north-eastern Queensland comprise various native grasses (Poaceae).

Seasonality
Adults are seasonal, occurring only during the 'build-up' and wet season (October–March). They appear to be particularly abundant and freshly emerged early in the season (October) following the first substantial wet season rains, but we have too few records (n = 19) to adequately assess seasonal changes in abundance. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible only one or two generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC. Although the species N. xanthomera has a restricted range in the study region, there are no known threats facing the taxon.
Wide-brand Sedge-skipper
Hesperilla crypsigramma (Meyrick & Lower, 1902)

Habitat

Hesperilla crypsigramma breeds in eucalypt woodland and low open woodland on laterite or quartz–sandstone rocky outcrops, such as ridges and steep upper slopes and summits of hills, where the larval food plant grows as a sedge in high density.

Larval food plant

Scleria sphacelata (Cyperaceae).

Seasonality

Adults are seasonal, occurring mainly in the warmer and wetter periods of October and again from February to April. The immature stages (eggs or pupae) have also been detected in these months, indicating that breeding occurs at the time when adults are most abundant. It is not clear whether the few records of adults during the intervening months (November–January) reflect a period of reduced activity or simply a lack of recording. The species appears to survive the dry season (May–September) in the larval stage. Presumably, at least two generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

DD. The putative subspecies *H. crypsigramma* ssp. ‘Top End’ is a narrow-range endemic (EOO = 20,980 sq km) and it occurs in several conservation reserves, including Litchfield National Park, Robin Falls and Fish River Station. However, the effect of inappropriate fire regimes requires further investigation. The immature stages are killed by fire and much of its habitat is subjected to landscape fire, with some areas of the range experiencing an increase in frequency of dry season burns, with short interfire intervals. The species may survive as larvae on sedges growing on steep rocky slopes/cliffs protected from fire or in unburnt patches. Presumably, the resulting adults from these larvae then recolonise food plants regenerating in burnt areas during the wet season. Although the larval food plant is currently listed as LC under the TPWCA, *H. crypsigramma* may qualify as Near Threatened (NT) once adequate data are available.

Distribution

This species is represented by an undescribed subspecies, which is endemic to the study region. It occurs in the north of the Northern Territory, its presence detected only as recently as 1989 (Field 1990a). It is restricted to the centre and northwestern corner of the Top End, with all records from the higher rainfall areas (> 900 mm mean annual rainfall). The geographic range of *H. crypsigramma* closely corresponds with the spatial distribution of its larval food plant. The food plant, however, has a slightly wider range, occurring also on Melville Island, the Arnhem Land Plateau east of Jabiru and the Port Keats area (Macadam Range), NT. Further field surveys are thus required to determine whether *H. crypsigramma* also occurs in these areas. Outside the study region, *H. crypsigramma* occurs in north-eastern and eastern Australia.

Excluded data

The record from the western Gulf Country at Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998), is excluded. The record was based on ‘[a] single female taken at Holts Creek’ (Daniels and Edwards 1998: 89), but most likely refers to *Hesperilla sexguttata*. Females of the two species are difficult to distinguish, and *Scleria sphacelata*—the larval food plant of *H. crypsigramma*—does not occur in the park or adjacent areas.
Riverine Sedge-skipper
Hesperilla sexguttata Herrich-Schäffer, 1869

Habitat
Hesperilla sexguttata usually breeds in paperbark swampland, mixed riparian paperbark woodland along creeks and riverine paperbark tall woodland, often with rainforest elements in the understorey or adjacent to monsoon forest, where the larval food plant grows as a sedge. In the drier inland areas, the breeding habitat consists of riverine corridors in which the food plant grows on sandy banks and riverbeds that are inundated during wet season floods. Males also fly in open rocky areas on the summit of steep hills, which are used as encounter sites to locate females for mating, but they do not breed in this habitat.

Larval food plant
Cyperus javanicus (Cyperaceae).

Seasonality
Adults have been recorded during most months of the year, but we have too few records (n = 17) to assess any seasonal changes in abundance. The immature stages have been recorded mainly from May to October, indicating that the species breeds during the dry season. However, it is very likely H. sexguttata breeds continuously throughout the year; the lack of data during the wet season (November–February) is probably because the breeding habitats are frequently inaccessible at that time of year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Spinifex Sand-skipper

Proeidosa polysema (Lower, 1908)

Distribution

This species occurs very widely in the study region. The northernmost limit is in the Noonamah–Berry Springs area, approximately 28 km south-east of Darwin, NT (Braby and Westaway 2016). The broad geographic range corresponds with the spatial distribution of its larval food plants (*Triodia* spp.). However, there are few records of *P. polysema* from the southern Kimberley and Great Sandy Desert, WA, and none from the Tiwi Islands, northern coastal areas and north-eastern Arnhem Land, despite the presence of the food plants. Further field surveys are therefore required to determine whether *P. polysema* occurs in these areas. Outside the study region, *P. polysema* occurs widely in the semi-arid and arid zones of central Australia and in northern and central Queensland.

Habitat

Proeidosa polysema breeds mainly in eucalypt open woodland with a hummock/tussock grass understorey on sand and dry rocky sandstone, favouring shallow gullies, hill-slopes and escarpments where the larval food plants grow as perennial ‘soft’ resinous spinifex tussock-forming grasses (Braby 2015e). It also occurs in low open woodland on sandstone pavements and hummock grassland on sand dunes, but near Darwin it breeds in eucalypt open woodland on sandy soil derived from laterite (Braby and Westaway 2016).

Larval food plants

Triodia bitextura, T. microstachya, T. pungens (Poaceae). The main food plants are *T. bitextura* and *T. microstachya*, but *T. pungens* is used in the drier inland areas of lower rainfall (< 900 mm mean annual rainfall).

Seasonality

Adults are seasonal, occurring only during the wet season (November–April), but there are too few records (*n* = 19) to assess temporal changes in abundance. There are limited data on the phenology of the immature stages, and the number of generations completed annually is not known. The long dry season is passed in the larval stage—usually the final instar larva, which may remain in diapause inside its shelter for many months.

Breeding status

This species is resident in the study region.

Conservation status

LC. Although the species *P. polysema* has a very wide geographical range, the effect of inappropriate fire regimes requires further investigation. The immature stages are killed by fire and much of its habitat is subjected to landscape fire, with some areas of the range experiencing an increase in the frequency of dry season burns. The species may survive as larvae on grasses growing on steep rocky slopes/cliffs protected from fire or in unburnt patches. Presumably, the resulting adults from these larvae then recolonise food plants regenerating in burnt areas during the wet season.
Northern Iris-skipper

Mesodina gracillima E. D. Edwards, 1987

Distribution

This species is endemic to the study region. It is restricted to the north of the Northern Territory, where it occurs in the higher rainfall areas (> 1,200 mm mean annual rainfall) of the Top End. Its geographic range closely corresponds with the spatial distribution of its larval food plant. The food plant, however, has a slightly broader range, extending further south to the Katherine district, including Nitmiluk (Katherine Gorge) National Park, NT. Further field surveys are therefore required to determine whether *M. gracillima* occurs in this area.

Habitat

Mesodina gracillima breeds in eucalypt woodland and open woodland with a sparse understorey of grasses and herbs, including the larval food plant, which grows on well-drained sandy soils, often on gently sloping terrain or ridges (Edwards 1987).

Larval food plant

Patersonia macrantha (Iridaceae).

Seasonality

Adults have been recorded during most months of the year. They appear to be more abundant towards the end of the wet season (February and March), but we have too few records (n = 17) to adequately assess any seasonal changes in abundance. The immature stages have also been recorded during most months of the year, particularly during the late wet season and early to mid dry season (February–August). Larval development is protracted, but it is not certain how many generations are completed annually. It is likely *M. gracillima* breeds continuously throughout the year, except perhaps in the late dry season, when the food plants may become stressed from lack of water.

Breeding status

This species is resident in the study region.

Conservation status

LC. The species *M. gracillima* has a restricted range within which it occurs in several conservation reserves, including Garig Gunak Barlu National Park, Kakadu National Park and Djelk IPA. However, the effect of inappropriate fire regimes as a potential threat requires further investigation (Young 2005). The immature stages are killed by fire and much of its habitat is subjected to landscape fire, with some areas of the range experiencing an increase in the frequency of dry season burns. Presumably, some larvae survive on clumps growing in unburnt patches and the resulting adults then recolonise food plants regenerating in burnt areas during the wet season. It is not clear what the long-term effects of increased fire frequency are for the species and its larval food plant. The larval food plant is currently listed as LC under the *TPWCA*. Monitoring of the abundance or occupancy of the butterfly and its food plant is required to clarify the effect of short interfire intervals as a key threatening process.
Orange Swift

Parnara amalia (Semper, [1879])

Distribution

This species occurs in the north of the Northern Territory of the study region. It is restricted to the north-western corner of the Top End, where it occurs in the higher rainfall areas (generally > 1,300 mm mean annual rainfall). It extends from Darwin south to the Daly River crossing (Ooloo crossing) (Hutchinson 1978) and east to Cooper Creek (Oenpelli–Murgonella Road crossing) (Dunn and Dunn 1991), NT. Further field surveys are required to determine whether *P. amalia* occurs in the eastern half of the Top End, particularly in north-eastern Arnhem Land. Outside the study region, *P. amalia* occurs in mainland New Guinea and eastern Australia.

Habitat

The breeding habitat of *P. amalia* has not been recorded in the study region. Adults have been collected in a wide range of habitats, but they are generally more prevalent in paperbark swampland in juxtaposition to monsoon forest or mangroves. Presumably, the species breeds in this habitat and other moist low-lying areas.

Larval food plants

Oryza sativa (Poaceae). The native food plant has not been recorded in the study region, but larvae have been reared on cultivated rice at Humpty Doo (C. S. Li) and Tortilla Flats (C. Wilson).

Seasonality

Adults occur throughout the year, but they are most abundant during the wet season and early dry season, particularly in May following good wet seasons of average or above average rainfall. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is likely the species breeds throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC. The species *P. amalia* has a restricted range in the study region within which it occurs in several conservation reserves, including Howard Springs Nature Reserve, Fogg Dam Conservation Reserve, Litchfield National Park and Kakadu National Park. Despite its restricted occurrence, there are no known threats facing the taxon.
6. SKIPPERS

Parnara amalia

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970

Relative abundance (%)

- *Parnara amalia* (n = 43)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Rice Swift
Borbo cinnara (Wallace, 1866)

Distribution
This species occurs in the north of the Northern Territory of the study region, where it is restricted to the north-western corner of the Top End. Historically, it was recorded from Darwin, Berry Springs and Adelaide River, NT. However, we are not aware of any additional records since it was first collected in 1948 by F. M. Angel and F. E. Parsons (Angel 1951)—a period of 70 years. Further field surveys are thus required to determine whether the species is still extant in the region. The putative larval food plant (*Rottboellia cochinchinensis*) occurs in the northern coastal areas of the Top End. Outside the study region, *B. cinnara* occurs widely from India, southern China and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern Australia to the Solomon Islands, Vanuatu and New Caledonia.

Habitat
The breeding habitat of *B. cinnara* has not been recorded in the study region. Sands and New (2002) suggested the species was likely to breed in wetland habitats.

Larval food plants
Not recorded in the study region; possibly *Rottboellia cochinchinensis* (Poaceae), which is the food plant in the Torres Strait Islands, Qld (Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded in April and May, but there are too few records (n = 4) to assess any seasonal changes in abundance.

Breeding status
Borbo cinnara does not appear to have become permanently established in the study region. Adults of *B. cinnara* resemble those of *B. impar* and *Pelopidas lyelli* and thus it may have been overlooked. However, at the time of its discovery in the Northern Territory, Angel (1951: 13) remarked that *B. cinnara* ‘was more plentiful than the preceding species’ (*Borbo impar lavinia*), which suggests the species was breeding locally. Currently, *B. impar* is seasonally abundant in the study region, whereas *B. cinnara* now appears to be absent. Angel’s early observations were made before attempts to develop the rice industry in the Top End in the late 1950s to early 1960s (cultivated rice, *Oryza sativa*, is a common larval food plant in South-East Asia), which indicates that the subsequent collapse of the rice industry does not account for the disappearance of this species. It is therefore possible that *B. cinnara* is a vagrant or a rare immigrant from South-East Asia, occasionally colonising the region and breeding temporarily during favourable conditions.

Conservation status
NA.
6. SKIPPERS

Borbo cinnara

- **Specimen <1970**
- **Literature <1970**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Photo: Piccaninny, Bungle Bungles, WA, M.F. Braby
Yellow Swift

Borbo impar (Mabille, 1883)

Distribution

This species is represented by the subspecies *B. impar lavinia* (Waterhouse 1932), which is endemic to the study region. It occurs in the north of the Northern Territory, where it is restricted to the higher rainfall areas (> 1,300 mm mean annual rainfall) of the north-western corner of the Top End and also on Groote Eylandt, NT (Dunn and Dunn 1991). The geographic range closely corresponds with the spatial distribution of its preferred native larval food plant (*Hymenachne acutigluma*). The food plant, however, has a broader range, occurring in coastal areas near Port Keats (Palumpa Billabong) and in north-eastern Arnhem Land (Arafura Swamp, Goromuru River floodplain), NT. Further field surveys are thus required to determine whether *B. impar* also occurs in these areas. Outside the study region, *B. impar* occurs from Maluku, through mainland New Guinea and adjacent islands and the Torres Strait Islands, Qld, to the Solomon Islands and New Caledonia.

Habitat

Borbo impar breeds mainly in floodplain wetlands and swamps where the native larval food plant (*Hymenachne acutigluma*) grows as a grass in standing water (Braby 2011a). It also breeds along the edges of monsoon forest where the introduced food plants *Cenchrus pedicellatus* and *Megathyrsus maximus* grow as tall grassy weeds, particularly in urban or disturbed areas.

Larval food plants

Hymenachne acutigluma, *Whiteochloa airoides* (Poaceae); also *Cenchrus pedicellatus*, *Megathyrsus maximus*, *Oryza sativa*, *Zea mays* (Poaceae).

The main native food plant appears to be *H. acutigluma* (Braby 2011a), but the species also breeds seasonally on introduced *C. pedicellatus* and *M. maximus* (Meyer 1996a, 1997b).

Seasonality

Adults occur throughout the year, but they are most abundant towards the end of the wet season (March and April). Few adults have been recorded during the mid to late dry season (June–September). The immature stages have been recorded from February to June and during the ‘build-up’ (October and November), and are not known to undergo diapause during the dry season. Larvae and pupae are particularly abundant in February–April, when the invasive annual mission grass (*Cenchrus pedicellatus*) germinates and produces new leaf growth following the monsoon rains. Presumably, the species breeds throughout the year on the perennial grasses and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC. The subspecies *B. impar lavinia* is a narrow-range endemic (geographic range = 35,360 sq km) and it occurs in several conservation reserves, including Charles Darwin National Park, Black Jungle Conservation Reserve, Fogg Dam Conservation Reserve, Manton Dam Recreation Area and Kakadu National Park. Despite its restricted occurrence, there are no known threats facing the taxon.
Borbo impar

- Specimen ≥1570
- Observation ≥1570
- Literature ≥1570
- Specimen <1570
- Literature <1570
- Larval food plant

Borbo impar

- Species record
- Geographic range
- Phylogenetic boundary
- IBRA bioregional boundary

Borbo impar (n = 57)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Lyell’s Swift

Pelopidas lyelli (Rothschild, 1915)

Habitat

Pelopidas lyelli occurs in a wide range of habitats, but it breeds mainly in riparian habitats, including woodland, open forest and the edges of mixed monsoon forest along seasonal creeks and riverbanks where the native larval food plants grow as dense perennial grasses in moist open areas (Braby 2015e).

Larval food plants

Chrysopogon elongatus, *Eriachne trioides*, *Mnesithea rottboellioides* (Poaceae); also *Cenchrus pedicellatus*, *Megathyrsus maximus*, *Oryza sativa* (Poaceae).

Seasonality

Adults occur throughout the year and, like *Parnara amalia* and *Borbo impar*, they are most abundant during the late wet season and early dry season (April and May) after the monsoon rains have fallen and the larval food plants are green and luxuriant. The immature stages have been recorded sporadically from January to June, and are not known to undergo diapause during the dry season. Presumably, the species breeds continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC.

Distribution

This species is represented in the study region by the subspecies *P. lyelli lyelli* (Rothschild, 1915). It occurs widely throughout the region, extending from the Kimberley, through the Top End and Northern Deserts to the western Gulf Country. Its geographic range closely corresponds with the spatial distribution of its native larval food plants, indicating that *P. lyelli* has been well sampled in the region. Outside the study region, *P. lyelli* occurs from Maluku, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Solomon Islands and Vanuatu.

Previous records of the dingy swift, *Pelopidas agna* (Moore, 1866), refer to this species (see Braby 2012b).
Pelopidas lyelli

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Relative Abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Pelopidas lyelli (n = 286)
Large Yellow Grass-dart

Taractrocera anisomorpha (Lower, 1911)

Habitat

The breeding habitat of _T. anisomorpha_ has been recorded only from the arid zone just outside the study region, where the species is found associated with tussocks of the native larval food plant growing along dry watercourses and sand banks of rivers in central Australia (Atkins 1991). Elsewhere, adults have been collected in savannah woodland, often near creeks, and they undoubtedly breed in this habitat.

Larval food plants

Eulalia aurea (Poaceae); also *Sorghum bicolor* (Poaceae).

Seasonality

Adults are seasonal, occurring only during the wet season and early dry season (November–May), with a peak in abundance in March. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible there are only one or two generations annually. Presumably, the species remains in larval diapause for long periods (possibly up to nine months) during the drier months, as has been recorded elsewhere in Australia (Atkins 1991).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Taractrocera anisomorpha

- Specimen ≥1870
- Observation ≥1870
- Literature ≥1870
- Specimen <1870
- Literature <1870
- Larval food plant

Taractrocera anisomorpha

- Geographic range
- Phytophagous boundary
- IBRA bioregional boundary

Taractrocera anisomorpha (n = 38)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
No-brand Grass-dart
Taractrocera ina Waterhouse, 1932

Habitat

Taractrocera ina breeds in savannah woodland and mixed monsoon vine thicket, favouring open or disturbed areas with a grassy understorey, where the native and introduced larval food plants grow as annual or perennial grasses (Braby 2011a, 2015e).

Larval food plants

Cymbopogon procerus, Sorghum macrosperrum, Sorghum sp. (Poaceae); also *Cenchrus pedicellatus,* *Cymbopogon citratus,* *Megathyrsus maximus* (Poaceae); possibly *Sacciolepis indica* (Poaceae).

Seasonality

Adults are seasonal, occurring mainly during the warmer months, when humidity is higher, with a peak in abundance in the mid wet season (January). They are generally absent during the cooler dry season (May–August). The immature stages (larvae or pupae) have been recorded from January to May, during which several generations are completed. However, as the dry season progresses and the food plants dry out or decline in quality, the final instar larvae stop feeding and remain in diapause inside their tubular shelters for up to six months. Presumably, the larvae pupate and emerge as adults a few weeks later in response to the first pre-monsoon storms towards the end of the dry season and start of the wet season (September–November or December).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Taractrocera ina

Relative abundance (%)

Month

Taractrocera ina (n = 70)

Relative abundance (%)
River-sand Grass-dart
Taractrocera dolon (Plötze, 1884)

Habitat
The breeding habitat of *T. dolon* has not been recorded in the study region. Adults have been collected mainly in savannah woodland and riparian woodland, favouring open disturbed areas with patches of bare ground, and no doubt they breed on native grasses in these habitats.

Larval food plants
Not recorded in the study region. The food plants in Queensland consist of various grasses (Poaceae), the identity of which have not been documented (Braby 2000).

Seasonality
Adults are seasonal, being most abundant during the wet season (January–April). Very few adults have been recorded during the long dry season (May–October), and none has been recorded during the cooler winter months (June–August). A few adults have been collected after pre-monsoon storms in the early wet season (November and December). The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible only one or two generations are completed annually. Presumably, the species remains in larval diapause during the dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species is represented by the subspecies *T. dolon diomedes* Waterhouse, 1933, which is endemic to the study region. It has a disjunct distribution, occurring in the northern and western Kimberley at Middle Osborn Island and Samson Inlet, WA (J. E. and A. Koeyers); and the Top End, where it has been recorded mostly from the higher rainfall areas in the north-western corner (> 1,000 mm mean annual rainfall). It also occurs on the Wessel Islands (Rimbija Island) in the north-east (Dunn and Dunn 1991) and extends into drier areas of lower rainfall (< 800 mm), where it has been recorded as far south as Coolibah Station and Leila Creek, NT (Dunn and Dunn 1991). It has not been recorded from the Tiwi Islands, Cobourg Peninsula or Groote Eylandt; thus, further field surveys are required to determine whether *T. dolon* is present in these areas. Outside the study region, *T. dolon* occurs in eastern Australia and Tagula Island in the Louisade Archipelago.
Taractrocera dolon

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970

Taractrocera dolon

- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Taractrocera dolon (n = 60)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Rock Grass-dart

Taractrocera ilia Waterhouse, 1932

Distribution
This species is endemic to the study region. It is known only from the Top End, where it is restricted to western Arnhem Land. The known and putative larval food plants (*Micraira* spp.) are all restricted to the sandstone plateau of Arnhem Land, and their spatial distribution corresponds with the geographic range of *T. ilia*. The food plants, however, are more widely distributed, extending further south to the Katherine Gorge area, NT, and further east to the edge of the sandstone plateau—a remote area that is difficult to access. It is very likely *T. ilia* also occurs in these areas.

Excluded data
Historical records from Melville Island and Darwin based on two specimens in the SAM (Waterhouse 1932) are erroneous (Braby and Zwick 2015).

Habitat
Taractrocera ilia breeds in open sandstone pavements where the larval food plants grow as prostrate, dense mat-forming or hummock ‘resurrection’ grasses on gravelly rock scree, shallow depressions, seepage depressions and moist seepages at the base of rock overhangs (Braby and Zwick 2015).

Larval food plants
Micraira adamsii, *M. compacta*, *M. multinervia*, *M. spinifera*, *M. tenuis* (Poaceae); probably *Micraira dentata*, *M. inserta*, *M. pungens*, *M. subspicata*, *M. viscidula*.

Seasonality
Adults occur throughout the year, but they are most abundant during the wet season (particularly in February), when the food plants rehydrate, are green and produce new leaf growth. During the dry season—or during hot, dry periods between the monsoon troughs—the plants typically desiccate, are brown and stop growing. Despite the desiccated condition of the food plants during the dry season, breeding occurs throughout the year, but during the dry season the larvae remain in diapause inside their silken shelters, usually as final instar larvae (for up to six months) or as first instar larvae (at least for a month towards the end of the dry season).

Breeding status
This species is resident in the study region.

Conservation status
LC. The species *T. ilia* is a narrow-range endemic and its entire range occurs within two conservation reserves: Kakadu National Park and Warddeken IPA. Despite its restricted occurrence, there are no known threats facing the taxon.
Relative abundance (%)

Month

Taractrocera ilia (n = 38)
Sandstone Grass-dart
Taractrocera psammopetra Braby, 2015

Distribution
This species is endemic to the study region. It was described only as recently as 2015, five years after it was first discovered, in 2010. It has a disjunct distribution, occurring in the Kimberley and in western Arnhem Land in the Top End. It is less common and has a much smaller extent in the north of the Northern Territory, where it occurs sympatrically with *Taractrocera ilia*. In Western Australia, it occurs in the higher rainfall areas of the northern Kimberley (> 1,200 mm mean annual rainfall), as well as in semi-arid areas of the eastern Kimberley (c. 700 mm). The known and putative larval food plants (*Micraira* spp.), however, are more widely distributed, extending as far south as the Bungle Bungle Range (Purnululu National Park) and King Leopold Ranges, WA. Further field surveys are thus required to determine whether *T. psammopetra* occurs in the southern Kimberley.

Habitat
Taractrocera psammopetra breeds in open sandstone pavements, typically in shallow depressions or moist seepages on sandstone plateaus or on skeletal soils adjacent to watercourses, or on rock ledges of sandstone cliffs, where the larval food plants grow as prostrate, dense mat-forming or hummock ‘resurrection’ grasses (Braby and Zwick 2015).

Larval food plants
Micraira brevis, M. lazaridis, M. spiciforma, Micraira sp. ‘Purnululu’ (Poaceae); probably Micraira dunlopii. The food plant for the population in western Arnhem Land in the Top End has not been determined.

Seasonality
Adults are seasonal, occurring only during the wet season (November–February), but there are too few records (n = 12) to assess temporal changes in abundance. No adults have been recorded during the dry season despite targeted searches in April, May and August. The immature stages (eggs and pupae) have been recorded in February, when the food plants rehydrate, are green and produce new leaf growth. During the long dry season, the plants desiccate, are brown and stop growing, and the larvae remain in diapause as final instars inside their silken shelters. Presumably, only one or possibly two generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC. Despite the wide geographical range of *T. psammopetra*, the available data suggest it has a disjunct distribution with a limited AOO. The species occurs in several conservation reserves, including Mitchell River National Park, El Questro Wilderness Park, Keep River National Park (Spirit Hills extension) and Kakadu National Park. Despite its restricted occurrence, there are no known threats facing the taxon.
Narrow-brand Grass-dart

Ocybadistes flavovittatus (Latrielle, [1824])

Distribution

This species is represented by the subspecies *O. flavovittatus vesta* (Waterhouse, 1932), which is endemic to the study region. It has a broad distribution, occurring in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 700 mm mean annual rainfall). It has been recorded as far south as the central Kimberley (Mornington Wildlife Sanctuary, WA) and western Gulf Country, at Cape Crawford and McArthur River Homestead, NT (Common and Waterhouse 1981; Braby 2000), and Doomadgee, Qld (Puccetti 1991). Outside the study region, *O. flavovittatus* occurs in mainland New Guinea and adjacent islands and widely in eastern Australia.

Larval food plants

Cynodon dactylon (Poaceae). The native food plants have not been recorded in the study region, but in eastern Australia they consist of various grasses (Poaceae), the identity of which have not been documented (Braby 2000).

Seasonality

Adults occur throughout the year, but they appear to be more abundant from the late wet season (March and April) to the mid dry season (July). We have few data on the phenology of the immature stages (eggs and larvae), which have been recorded in August. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Ocybadistes flavovittatus

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Larval food plant

Relative abundance (%)

Month

Ocybadistes flavovittatus (n = 79)

Relative abundance (%)	Month
0 | J
5 | F
10 | M
15 | A
20 | M
15 | J
10 | J
5 | A
0 | S
5 | O
10 | N
15 | D
20 | E

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | | | |
Larva | | | | | | | | | | | | | |
Pupa | | | | | | | | | | | | | |
Adult | | | | | | | | | | | | | |
Green Grass-dart

Ocybadistes walkeri Heron, 1894

Habitat
The natural breeding habitat of *O. walkeri* has not been recorded in the study region. The species breeds commonly in urban areas where the naturalised larval food plants thrive, typically in well-watered lawns in suburban parks and gardens (Braby 2015e). Elsewhere, adults have been collected in a wide variety of habitats, including savannah woodland, paperbark swampland, woodland and open forest and mixed woodland–monsoon forest associations, usually along or adjacent to riparian areas such as perennial creeks and rivers. They also occur in moist open grassy areas within or along the edge of semi-deciduous monsoon vine thicket and evergreen monsoon vine forest. Presumably, the species breeds in all of these habitats.

Larval food plants

Axonopus compressus, Melinis repens (Poaceae). The native food plants have not been recorded in the study region, but in eastern Australia they consist of various grasses, including *Imperata cylindrica* (Poaceae) (Braby 2000).

Seasonality
Adults occur throughout the year, but they appear to be more abundant in the mid dry season (June and July) and least numerous in the late dry season (September and October). We have few data on the phenology of the immature stages, with eggs recorded in March and August. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species is represented by the subspecies *O. walkeri olivia* Waterhouse, 1933, which is endemic to the study region. It is restricted mainly to the Top End (> 800 mm mean annual rainfall), reaching its southern limits at Victoria River Roadhouse and Mataranka, NT. It has also been recorded in the eastern Kimberley, based on a historical male specimen from Wyndham, WA, and a more recent observation at Keep River National Park (Cockatoo Lagoon), NT. The extent to which the species occurs in the Kimberley requires further scrutiny. It often occurs together with the closely related *Ocybadistes flavovittatus*, but it does not extend as far inland as that species. The putative native larval food plant (*Imperata cylindrica*) occurs widely in northern Australia. Outside the study region, *O. walkeri* occurs from the Lesser Sunda Islands, through mainland New Guinea and adjacent islands to eastern and south-eastern Australia.

Excluded data
Yeates (1990) listed this species from the northern Kimberley based on one male and three females collected at Kalumburu Mission on 4–6 May 1989. However, examination of this material in the Western Australian Department of Agriculture collection (WADA) indicated that all were misidentified and were in fact *Ocybadistes flavovittatus*, a species known to occur in the northern Kimberley. Thus, the record of *O. walkeri* is excluded from the northern Kimberley.
Ocybadistes walkeri

Relative abundance (%)

Month

Ocybadistes walkeri (n = 134)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
White-margined Grass-dart

Ocybadistes hypomeloma Lower, 1911

Habitat

The breeding habitat of *O. hypomeloma* has not been recorded in the study region. Adults have been collected mainly in savannah woodland and they undoubtedly breed on native grasses in this habitat.

Larval food plants

Not recorded in the study region; probably *Ischaemum australe* and *Themeda triandra* (Poaceae), which are the food plants in eastern Australia (Braby 2000).

Seasonality

Adults have been recorded sporadically throughout the year, with most records in the wet season (February and April). The breeding phenology and seasonal history of the immature stages have not been recorded, but presumably the species breeds continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC.

Distribution

This species occurs in the Kimberley and western half of the Top End, with more sporadic occurrences in the western Gulf Country. It extends from the higher rainfall areas at Darwin to drier inland areas of the semi-arid zone (< 700 mm mean annual rainfall), where it has been recorded as far inland as El Questro Wilderness Park (Amalia Gorge, El Questro Gorge), WA (Braby 2012b). In the western Gulf Country, it has been recorded at McArthur River Homestead, NT (Common and Waterhouse 1981), and Boodjamulla/Lawn Hill National Park (Lawn Hill Gorge), Qld (Daniels and Edwards 1998). The putative larval food plants (*Ischaemum australe* and *Themeda triandra*) occur widely in northern Australia. Further field surveys are thus required to determine the geographic range of *O. hypomeloma* more precisely, particularly whether it occurs in the eastern half of the Top End and coastal areas of the Gulf of Carpentaria. Outside the study region, *O. hypomeloma* occurs in the Pilbara of Western Australia and widely in eastern Australia.

The subspecific status has not been determined with certainty; it may be *O. hypomeloma vagt* (Waterhouse, 1932), otherwise known only from the Torres Strait islands, or an undescribed subspecies.
Ocybadistes hypomeloma

- Specimen ≥1970
- Literature ≥1970
- Literature <1970
- Putative larval food plants

Ocybadistes hypomeloma

- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Ocybadistes hypomeloma (n = 30)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Wide-brand Grass-dart
Suniana sunias (C. Felder, 1860)

Distribution
This species is represented by the subspecies *S. sunias sauda* Waterhouse, 1937, which is endemic to the study region. It is restricted to the north of the Northern Territory, where it occurs in the higher rainfall areas (> 1,000 mm mean annual rainfall). Most records are from the north-western corner of the Top End, where it extends as far south-east as Nitmiluk (Katherine Gorge) National Park (Sweetwater Pool), but it has been recorded from Groote Eylandt in the Gulf of Carpentaria (Tindale 1923). It has not been recorded from the Tiwi Islands, Cobourg Peninsula or north-eastern Arnhem Land; thus, further field surveys are required to determine whether *S. sunias* is present in these northern areas. Outside the study region, *S. sunias* occurs from Maluku and the Lesser Sunda Islands, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Solomon Islands.

Habitat
The breeding habitat of *S. sunias* has not been recorded in the study region. Adults have been collected only in the grassy edges of riparian evergreen monsoon vine forest along creeks or the banks of rivers with permanent water, and in light gaps comprising grassy patches within coastal semi-evergreen monsoon vine thicket, and no doubt they breed in these habitats.

Larval food plants
Megathyrsus maximus (Poaceae). The native food plants have not been recorded in the study region, but undoubtedly consist of native grasses (Poaceae).

Seasonality
Adults have been recorded during most months of the year, but they are more abundant from the late wet season to the mid dry season (March–July). The breeding phenology and seasonal history of the immature stages have not been recorded, but it is likely the species breeds continuously throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Suniana sunias

- Specimen ±1970
- Observation ±1970
- Literature ±1970
- Literature <1970

Suniana sunias

- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Suniana sunias (n = 40)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Dark Grass-dart

Suniana lascivia (Rosenstock, 1885)

Habitat

Suniana lascivia occurs in a variety of habitats, but it breeds mainly in swampsy and riparian areas, including paperbark–pandanus swampland adjacent to evergreen monsoon vine forest and the edges of mixed riparian woodland or open forest with rainforest elements in the understorey where the native larval food plants grow as perennial grasses in abundance in the more open areas (Braby 2011a, 2015e). In the drier inland areas, the breeding habitats are confined to perennial creeks along gorges.

Larval food plants

Ischaemum australe, *Imperata cylindrica* (Poaceae); also *Megathyrsus maximus* (Poaceae).

Seasonality

Adults have been recorded during most months of the year, but they are more abundant from the late wet season to the mid dry season (March–July). The apparent peak in abundance in May is a sampling bias due to targeted surveys in the eastern Kimberley (eight of 13 records for May are all from El Questro Wilderness Park in 2011). The immature stages have been recorded sporadically during the year, with no evidence of diapause in any of the life history stages. Presumably, the species breeds continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

Suniana lascivia larrakia: LC. *Suniana lascivia lasus*: DD. The subspecies *S. lascivia lasus* is a short-range endemic (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 700 sq km), and is currently known only from one extant location where it occurs on private Aboriginal land in which it has an uncertain future due to potential development. Thus, the taxon may qualify as Near Threatened (NT) once adequate data are available. Targeted field surveys to determine the extent of its distribution, critical habitat and key threatening processes on the Tiwi Islands should be a high priority for this subspecies.
Suniana lascivia

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Suniana lascivia

- Species record
- Geographic range
- Phyogeographic boundary
- IBRA bioregional boundary

Suniana lascivia (n = 51)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Pale-orange Darter
Telicota colon (Fabricius, 1775)

Habitat
Telicota colon occurs in a wide range of habitats, but it breeds mainly in open areas where the larval food plants commonly grow, including savannah woodland, mixed paperbark swampland and the edges of evergreen monsoon vine forest (Braby 2011a, 2015e). In the drier inland areas, the breeding habitats are confined to gorges with permanent water and other riparian areas, such as woodland along perennial creeks and the edges of open forest with rainforest elements in the understorey along riverbanks.

Larval food plants
Imperata cylindrica, Ischaemum australis, Mnesithea rotthoelloides (Poaceae); also *Oryza sativa, *Paspalum scrobiculatum, *Andropogon gayanus (Poaceae).

Seasonality
Adults occur during most months of the year, but they are more abundant during the late wet season (March and April). The immature stages have been recorded in January and from March to August, but undoubtedly occur at other times of the year. Presumably, the species breeds continuously throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Telicota colon

Relative abundance (%)

Month

Telicota colon (n = 85)

Relative abundance (%)
Bright-orange Darter

Telicota augias (Linnaeus, 1763)

Distribution
This species is represented in the study region by the subspecies *T. augias kreffti* (W. J. Macleay, 1866). It occurs widely in the Kimberley and Top End and does not intrude into the drier inland areas to any great extent (mainly > 800 mm mean annual rainfall). The geographical range closely corresponds with the spatial distribution of its larval food plant, indicating that *T. augias* has been well sampled in the region. The larval food plant, however, extends further south to the western Gulf Country at Limmen National Park (Nathan River Station) and Sir Edward Pellew Group (Vanderlin Island), NT. Further field surveys are therefore required to determine whether *T. augias* also occurs in these coastal and near-coastal areas. Outside the study region, *T. augias* occurs in South-East Asia, mainland New Guinea and north-eastern Australia.

Previous records of *Telicota ancilla baudina* Evans, 1949 refer to this species (Braby 2012b).

Habitat
Telicota augias breeds in a variety of wet and dry monsoon forests, including evergreen monsoon vine forest associated with permanent water, coastal semi-deciduous monsoon vine thicket and mixed woodland with rainforest elements in the understorey associated with sandstone cliffs, creeks and gorges, where the larval food plant grows into the canopy as a tall scrambling vine.

Larval food plant
Flagellaria indica (Flagellariaceae).

Seasonality
Adults occur throughout the year, but they are more abundant during the mid wet season (February). The immature stages have been recorded during most months of the year, with no evidence of diapause in any of the life history stages. Presumably, the species breeds continuously throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Orange Palm-dart

Cephrenes augiades (C. Felder, 1860)

Larval food plants

Carpentaria acuminata, *Livistona benthamii* (Arecaceae). The main food plant is *C. acuminata* (Braby 2011a). Dunn (2009) listed *Livistona sp.* as the food plant near Cahills Crossing on the East Alligator River, and this record refers to *L. benthamii*. It may also utilise ornamental palms in suburban areas.

Seasonality

Adults occur throughout the year, but they are more abundant during the wet season and early dry season (November–May). The immature stages have been recorded sporadically throughout the year; they may be particularly numerous in the late wet season. Presumably, the species breeds continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC. The putative subspecies *C. augiades* ssp. ‘Top End’ has a restricted range within which it occurs in several conservation reserves, including Litchfield National Park, Mary River National Park, Kakadu National Park, Laynhapuy IPA and several smaller reserves close to Darwin. Despite its restricted occurrence, there are no known threats facing the taxon.

Distribution

This species is represented by an undescribed subspecies, which is endemic to the study region. Its presence in the Northern Territory was detected only as recently as 1991 (Braby 2000). It is restricted to the northern half of the Top End, where it occurs in the higher rainfall areas (> 1,200 mm mean annual rainfall). Its distribution extends from Darwin and Litchfield National Park (Wangi Falls) to Gove Peninsula (Koolatong River, Balma outstation and Rocky Bay). The geographic range of *C. augiades* is closely tied to the spatial distribution of its two native larval food plants. The food plants, however, have a slightly wider extent, occurring near the Joseph Bonaparte Gulf (e.g. Fitzmaurice River area). Further field surveys are therefore required to determine whether *C. augiades* also occurs in this area. Outside the study region, *C. augiades* occurs from Indonesia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to New Britain and the Solomon Islands.

Habitat

Cephrenes augiades breeds mainly in evergreen monsoon vine forest associated with springs and permanent streams where the native larval food plants grow as palms (Braby 2011a). In the Darwin area, it also occurs in suburban parks and gardens where the primary food plant (*Carpentaria acuminata*) and ornamental palms have been established.
Cephenes augiades

- Specimen ±1970
- Observation ±1970
- Literature ±1970
- Larval food plants

Cephenes augiades

- Species record
- Geographic range
- Phytophagous boundary
- IBA bioregional boundary

Cephenes augiades (n = 90)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Yellow Palm-dart
Cephaledes trichopepla (Lower, 1908)

Distribution
This species occurs widely throughout the study region, extending further inland into the lower rainfall areas of the semi-arid zone (c. 600 mm mean annual rainfall) than *Cephaledes augiades*. Its geographic range corresponds well with the spatial distribution of its larval food plants, although records of *C. trichopepla* from the western Gulf Country are sparse. The species reaches its westernmost limit in the western Kimberley at Broome, WA (Dunn 1980; Common and Waterhouse 1981), which lies outside the range extent of its known native food plants. Further field surveys are required to determine the extent to which the species occurs in the Limmen Bight area and elsewhere in the Gulf Country. Outside the study region, *C. trichopepla* occurs naturally in Queensland and New South Wales.

Habitat
Cephaledes trichopepla breeds mainly in savannah woodland where the larval food plants grow as palms (Braby 2011a, 2015e). In the drier areas, breeding populations are restricted to riparian evergreen monsoon vine forest or mixed woodland–monsoon forest along gorges with permanent water. It also occurs in suburban parks and gardens where ornamental palms have been established.

Larval food plants
Livistona benthamii, L. humilis, L. inermis, L. lorophylla, L. nasmophila, L. rigida, L. victoriae (Arecaceae). The main food plants are *L. humilis* and *L. inermis* in the Top End, but it uses *L. lorophylla, L. nasmophila* and *L. victoriae* in the Kimberley (Braby 2011a, 2015e). The food plant is *L. rigida* at Mataranka, NT, and in the western Gulf Country at Boodjamulla/Lawn Hill National Park, Qld. The species also exploits several ornamental palms propagated in suburban parks and gardens (Dunn 2015b).

Seasonality
Adults occur throughout the year, but they are more abundant during the late wet season and early dry season (March–May). The immature stages have been recorded in all months, except January, with no evidence of diapause in any of the life history stages, suggesting the species breeds continuously throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
6. SKIPPERS

Cephenes trichoeca (n = 193)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Whites and yellows
(Pieridae)
White Migrant

Catopsilia pyranthe (Linnaeus, 1758)

Distribution

This species is represented in the study region by the subspecies *C. pyranthe crokera* (W. S. Macleay, 1826). It occurs widely in the region, mostly in areas that receive less than 1,300 mm mean annual rainfall. It is particularly common in the semi-arid zone, but less common in the northern parts of the range (north of latitude 14ºS). It is rare in the north-western coastal areas of the Top End (Dundee Beach–Darwin–Gunn Point), where it occurs very irregularly during migration/temporary range expansion (Braby 2014a). The putative native larval food plants (*Senna* spp.) occur widely in the semi-arid areas of northern Australia, and their combined spatial distribution corresponds well with the geographic range of *C. pyranthe*. Outside the study region, *C. pyranthe* occurs widely from India, southern China and South-East Asia to eastern Australia.

Habitat

The breeding habitat of *C. pyranthe* has not been recorded in the study region. Adults have been collected mainly in savannah woodland and they undoubtedly breed in this habitat.

Larval food plants

Senna occidentalis (Fabaceae: Caesalpinioideae); probably *Senna planitiicola* and *S. venusta*, which are two native food plants in Queensland (Braby 2000). The native food plants have not been recorded in the study region, but the immature stages have been reared on cultivated *S. occidentalis* at Berrimah Farm near Darwin, NT (M. Neal), and on an undetermined species at Tennant Creek, NT (C. Materne).

Seasonality

Adults have been recorded sporadically during the year, but they are most abundant during March and April following good wet seasons of average or above average rainfall. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible the species breeds seasonally. In the Darwin area and nearby locations—a region in which the species is normally absent—*C. pyranthe* is a rare seasonal visitor, with influxes likely to occur during March and April and less frequently from June to August and in December (Braby 2014a).

Breeding status

This species is assumed to be resident in the study region, but populations appear to be temporary in the northernmost areas of the range.

Conservation status

LC.
7. WHITES AND YELLOWS

Catopsilia pyranthe

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Putative larval food plants

Catopsilia pyranthe

- Specimen record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Month: J F M A M J J A S O N D

Relative abundance (%)

0 5 10 15 20 25 30
Lemon Migrant
Catopsilia pomona (Fabricius, 1775)

Larval food plants
*Cassia fistula, *C. siamea, *Senna alata, *S. occidentalis (Fabaceae: Caesalpinioideae); probably Senna magnifolia and S. venusta, which are two food plants in Queensland (Braby 2000). The native food plants have not been recorded in the study region, but the immature stages are frequently found on introduced C. fistula and C. siamea in suburban areas.

Distribution
This species occurs very widely in the study region. It extends from the Kimberley, through the Top End to the western Gulf Country, and from moist coastal areas to drier inland areas of the semi-arid zone, as well as the arid zone of central Australia beyond the southern boundary of the study region. The putative native larval food plants (Senna spp.) occur in the semi-arid areas of northern Australia, and their spatial distribution corresponds well with the geographical range of C. pomona. Outside the study region, C. pomona occurs widely from India, southern China and South-East Asia, through mainland New Guinea and adjacent islands to Australia, where it occurs throughout the northern half of the continent.

Habitat
The natural breeding habitat of C. pomona has not been recorded in the study region. The species frequently breeds in suburban parks and gardens where the introduced larval food plants are propagated as ornamental trees. Elsewhere, adults have been recorded in a wide variety of habitats in which they undoubtedly breed.

Seasonality
Adults occur throughout the year. They appear to show little seasonal variation in abundance, although they tend to be more numerous after the wet season (April and May) and least abundant during the cooler mid dry season (July), but they are also abundant during the wet season (December and January). Franklin (2011) found similar trends near Darwin, NT, based on quantitative studies conducted over 14 months during 2008–09. At Darwin, NT, the immature stages (eggs or larvae) have been recorded only during the warmer, more humid months (October–April), when the larval food plants produce flushes of new leaf growth. Presumably, the species breeds seasonally and females remain in reproductive diapause during the dry season (May–September), similar to populations in northern Queensland (Jones 1987). Although C. pomona a well-known migrant (Smithers 1983b), we have no records of migratory flights in the study region.

Breeding status
This species is resident in the study region.

Conservation status
LC.
7. WHITES AND YELLOWS

Catopsilia pomona

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Putative larval food plants

Relative abundance (%)

- Month
- Catopsilia pomona (n = 432)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Orange Migrant
Catopsilia scylla (Linnaeus, 1763)

Larval food plants
Senna leptoclada, S. oligoclada, S. surattensis (Fabaceae: Caesalpinioideae). *Senna surattensis* is the main food plant in coastal areas, but *S. oligoclada* and sometimes *S. leptoclada* are used in the more inland areas.

Seasonality
Adults occur throughout the year, but they are most abundant from March to May and again in October, usually after rainfall. At Darwin, NT, breeding is seasonal, with the immature stages (eggs and larvae) recorded mostly around these two periods (i.e. March–May and September–November). Meyer et al. (2006) also noted that the species was seasonal in Darwin, with adults recorded only during the period March–May. It is not clear whether the species breeds at other times of the year, remains in reproductive diapause or the population disperses to breed elsewhere. There appear to be no previous reports of migration or movement patterns for *C. scylla* in Australia. However, on several occasions in the Top End and Northern Deserts, directional flights in which adults were flying rapidly in a constant direction (north, north-east or east) have been observed during April and May (Braby 2016b). Its regular seasonal appearance in Darwin also suggests the arrival of migratory populations.

Breeding status
This species is assumed to be resident in the study region, but populations appear to be nomadic and are possibly temporary in many areas.

Conservation status
LC.
No-brand Grass-yellow

Eurema brigitta (Stoll, [1780])

Habitat
The breeding habitat of _E. brigitta_ has not been recorded in the study region.

Larval food plants
Not recorded in the study region; possibly _Chamaecrista nomame_ (Fabaceae: Caesalpinioideae), which is one of the food plants in eastern Australia (Braby 2016a).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The single specimen was collected on 18 January 1977.

Breeding status
Eurema brigitta does not appear to have become permanently established in the study region. It remains to be determined, however, whether it breeds temporarily on the Wessel Islands or the single individual was a vagrant that dispersed from Cape York Peninsula, Qld, across the Gulf of Carpentaria to north-eastern Arnhem Land.

Conservation status
NA.

Distribution
This species is represented in the study region by the subspecies _E. brigitta australis_ (Wallace, 1867). It is known from only a single worn female specimen collected from the Wessel Islands (Rimbija Island) in the north-eastern corner of the Top End by E. D. Edwards (Braby 2014a). The putative larval food plant (_Chamaecrista nomame_) occurs widely in the Kimberley and Top End. Outside the study region, _E. brigitta_ occurs widely from Africa, India, southern China and South-East Asia, through mainland New Guinea and north-eastern Australia to New Caledonia and Fiji.

Excluded data
Previous records for Darwin (Waterhouse and Lyell 1914; Meyer et al. 2006), Pine Creek (Angel 1951) and Daly River (Hutchinson 1978), NT, are considered to be erroneous (Braby 2014a). Waterhouse and Lyell’s (1914) published record for ‘Port Darwin’ was based on F. P. Dodd’s material, but examination of these historical specimens (and additional material from Groote Eylandt by N. B. Tindale) in the AM revealed that several catalogued under the name _E. brigitta_ had been misidentified and were actually _Eurema laeta_.

Plate 60 Big Mitchell Creek, Qld
Photo: Frank Pierce
Eurema brigitta

Specimen a1970

Month Distribution

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Lined Grass-yellow

Eurema laeta (Boisduval, 1836)

Habitat

The breeding habitat of *E. laeta* has not been recorded in the study region. Adults occur in a wide variety of habitats, especially savannah woodland, in which they undoubtedly breed. During the dry season they typically aggregate in the ground layer of moister habitats, such as riparian woodland, paperbark forest and monsoon vine forest along the banks of creeks and rivers or in semi-deciduous monsoon vine thicket on rocky outcrops and breakaways.

Larval food plants

Not recorded in the study region; probably *Chamaecrista* spp. (Fabaceae: Caesalpinioidae), which are the food plants in eastern Queensland (Braby 2000, 2016a).

Seasonality

Adults occur throughout the year, but they are more numerous during the dry season (June–September) after the peak of *Eurema herla*. Presumably, adults stop breeding during the dry season, remain in reproductive diapause and contract to moist refuges where they may be observed in relatively large numbers, similar to populations in northern Queensland (Jones and Rienks 1987). The breeding phenology and seasonal history of the immature stages have not been recorded, but it is likely several generations are completed during the wet season.

Breeding status

This species is resident in the study region.

Conservation status

LC.

Distribution

This species is represented in the study region by the subspecies *E. laeta sana* (Butler, 1877). It occurs widely in the Kimberley, Top End and western Gulf Country. It extends from moist coastal areas to drier inland areas of the semi-arid zone (c. 700 mm mean annual rainfall), reaching its southernmost limits in the Buccaneer Archipelago at Koolan Island in Yampi Sound (Koch and van Ingen 1969; McKenzie et al. 1995) and El Questro Wilderness Park (Pentecost River crossing) (Braby 2012b), WA; Judbarra/Gregory National Park (Limestone Gorge) (Braby and Archibald 2016) and Bessie Spring (Dunn and Dunn 1991), NT; and 60 km north-west of Doomadgee, Qld (Puccetti 1991). The putative larval food plants (*Chamaecrista* spp.) are widespread in northern Australia and their overall extent includes the geographic range of *E. laeta*. Outside the study region, *E. laeta* occurs widely from India, southern China, Japan and South-East Asia (although it is absent from the Malay Peninsula, Borneo and parts of Indonesia), through mainland New Guinea to north-eastern Australia.
7. WHITES AND Yellows

Eurema laeta

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Putative larval food plants

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)

- E. laeta (n = 352)

- Relative abundance (%)

- Month
Macleay’s Grass-yellow
Eurema herla (W. S. Macleay, 1826)

Habitat
Eurema herla breeds in savannah woodland, favouring open grassy areas where the larval food plants grow in the ground layer as annual herbs (Braby 2011a, 2015e). In the drier inland areas, it is usually associated with woodland on rocky outcrops and breakaways or along rocky seasonal gullies and creeks.

Larval food plants
Chamaecrista mimosoides, C. nigricans (Fabaceae: Caesalpinioideae).

Seasonality
Adults occur throughout the year, but they are more abundant during the late wet season and early dry season (March–June), before the peak of *Eurema laeta*. The breeding phenology and seasonal history of the immature stages are poorly known, but females have been observed laying eggs in March and May. Presumably, the life cycle strategy is similar to populations in northern Queensland in which breeding is limited to the wet season and early dry season and females remain in reproductive diapause during the mid to late dry season (June–October), when the food plants are not available (Jones and Rienks 1987).

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species has a very broad distribution, occurring throughout most of the study region. Its geographic range corresponds well with the spatial distribution of its larval food plants; however, *E. herla* extends further inland into semi-arid areas of lower rainfall (< 500 mm mean annual rainfall), including the Edgar Ranges, WA (Common 1981); 40 km south of Lajamanu, Rabbit Flat Roadhouse in the Tanami Desert (J. Archibald) and Tennant Creek, NT (Peters 1969); and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998). It has also been recorded from Devils Marbles, NT (Dunn 1980), just outside the southern boundary of the study region. It is not known whether the species is permanently established in the semi-arid zone and breeds on alternative species of *Chamaecrista* or the populations are temporary. Most records from the southern edge of the range are in the dry season (April–August), which suggests *E. herla* makes temporary southern expansions after rainfall or with the onset of cooler, dry weather. However, a specimen has been collected at Tennant Creek (Mary Anne Dam) in February (J. Archibald). Outside the study region, *E. herla* occurs in north-eastern and eastern Australia.
7. WHITES AND YELLOWS

Eurema herla

- Relative abundance (%)
- Month
- Specimen ≥1970
- Specimen <1970
- Literature ≥1970
- Literature <1970
- Larval food plants
- Putative larval food plants

Eurema herla (n = 217)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Small Grass-yellow
Eurema smilax (Donovan, 1805)

Distribution

This species occurs throughout much of the study region. It also extends into the arid zone of central Australia beyond the southern boundary of the study region. It is more common in the semi-arid areas and less frequently recorded in the higher rainfall areas, such as the north-western corner of the Top End, where it reaches its northernmost limit at Darwin, NT (Waterhouse and Lyell 1914; Campbell 1947; Angel 1951; Le Souëf 1971; Meyer et al. 2006). Surprisingly, there are no records of the species from the Tiwi Islands, Cobourg Peninsula or northern and eastern Arnhem Land despite the presence of the putative larval food plants, which occur widely in northern Australia; *Neptunia gracilis* occurs in monsoon and semi-arid areas, *N. monosperma* mainly in semi-arid areas and *Senna artemisioides* in semi-arid and arid areas. Outside the study region, *E. smilax* occurs widely throughout most of the Australian continent, particularly in semi-arid and arid areas.

Habitat

The breeding habitat of *E. smilax* has not been recorded in the study region. Adults occur in a wide variety of habitats, including savannah woodland, eucalypt low open woodland, grassland and *Acacia* shrubland, in which they no doubt breed.

Larval food plants

Not recorded in the study region; probably *Neptunia gracilis*, *N. monosperma*, *Senna artemisioides* (Fabaceae: Mimosoideae, Caesalpinioideae), which are three food plants in Queensland (Braby 2000).

Seasonality

Adults occur throughout the year, but they are more numerous during the dry season (May–August), although they are rarely observed in large numbers compared with other species of *Eurema*. The breeding phenology and seasonal history of the immature stages have not been recorded. Presumably, the species breeds throughout the year but populations are opportunistic and highly mobile.

Breeding status

Eurema smilax is assumed to be resident in the study region, but populations appear to be nomadic and are possibly temporary in the northern areas of the range, particularly in the north of the Northern Territory.

Conservation status

LC.
Scalloped Grass-yellow

Eurema alitha (C. & R. Felder, 1862)

Habitat

Eurema alitha breeds in semi-deciduous monsoon vine thicket and savannah woodland with a sparse cover of grasses where the larval food plant grows as a spreading ground cover or climber, usually over rock scree or on rocky hill-slopes (Braby 2011a).

Larval food plants

Galactia tenuiflora (Fabaceae: Faboideae).

Seasonality

Adults occur throughout the year, but, like *Eurema hecabe*, they are most abundant during the wet season, with a peak in abundance in April. They become less numerous as the dry season progresses and are scarce towards the end of the dry (September and October). The immature stages have been recorded during the wet season (January–April), when adults are most abundant. It is not known whether females enter reproductive diapause during the dry season or breed continuously, but reproductive activity declines as the dry season progresses.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Eurema alitha

- **Specimen s1970**
- **Observation s1970**
- **Literature s1970**
- **Literature s1970**
- **Larval food plant**

Relative abundance (%)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td>□</td>
</tr>
<tr>
<td>Pupa</td>
<td>□</td>
</tr>
<tr>
<td>Adult</td>
<td>□</td>
</tr>
</tbody>
</table>

Eurema alitha

- **Species record**
- **Geographic range**
- **Phyogeographical boundary**
- **IBRA bioregional boundary**
Large Grass-yellow
Eurema hecabe (Linnaeus, 1758)

Distribuion
This species occurs throughout much of the study region. It extends from moist coastal areas to drier inland areas of the semi-arid zone (< 400 mm mean annual rainfall), where it has been recorded as far south as Kelly Creek to the south of Tennant Creek, NT (M. Malipatil and J. Hawkins). Its geographic range corresponds with the broad spatial distribution of its native larval food plants, indicating that *E. hecabe* has been well sampled in the region. Outside the study region, *E. hecabe* occurs widely from Africa, India, southern China, Japan and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the islands of the South Pacific.

Habitat
Eurema hecabe occurs in a wide variety of habitats. It frequently breeds in both wet and dry monsoon forests, including evergreen monsoon vine forest associated with permanent freshwater springs or streams and semi-deciduous monsoon vine thicket associated with rock outcrops or coastal sand dunes and lateritic cliffs, where its native food plant (*Breynia cernua*) grows as a shrub. However, it also breeds in other habitats, including the edges of mangroves and savannah woodland where alternative food plants grow (particularly *Sesbania cannabina*).

Larval food plants
Senne surattensis, Sesbania cannabina (Fabaceae: Caesalpinioideae, Faboideae), *Breynia cernua, Phyllanthus* sp. (Phyllanthaceae); also *Senna alata, S. obtusifolia, Leucaena leucocephala* (Fabaceae: Caesalpinioideae, Mimosoideae).

Seasonality
Adults occur throughout the year, but, like *Eurema alitha*, they are most abundant during the wet season, with a peak in abundance in April. They may also be very abundant in May. They become less numerous as the dry season progresses and are scarce towards the end of the dry (August–October). The immature stages have been recorded during the wet season and early dry season (November–June). It is not known whether females enter reproductive diapause or breed continuously, but reproductive activity declines during the mid to late dry season (July–October). *Eurema hecabe* is a well-known migrant in eastern Australia (Smithers 1983b), but there few records of population movement in northern Australia. In April 2015, a large easterly flight was observed along the Stuart Highway between Noonamah and Adelaide River, NT (Braby 2016b).

Breeding status
This species is resident in the study region.

Conservation status
LC.
7. WHITES AND YELLOWS

![Map of Eurema hecabe](image1)

- **Eurema hecabe**
- **Relative abundance (%)**
- **Month**
- **Eurema hecabe (n = 621)**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Black-spotted White
Leptosia nina (Fabricius, 1793)

Habitat
Leptosia nina breeds in semi-deciduous monsoon vine thicket on steep basalt rock scree and breakaways, on bauxite with groundwater seepage and along seasonal rocky creeks where the larval food plant grows, preferring young vines growing very close to the ground. The dry monsoon forest in which it lives typically occurs in small patches protected from fire.

Larval food plant
Capparis sepiaria (Capparaceae).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded from February to July and in November, but there are too few records (n = 14) to assess any seasonal changes in abundance. Presumably, the species breeds continuously throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC. The putative subspecies L. nina ssp. ‘Kimberley’ is a short-range endemic (EOO = 5,930 sq km), with part of the population occurring in two conservation reserves: Mitchell River National Park and Uunguu IPA. Despite the restricted occurrence of the taxon, Sands and New (2002) considered it not to be threatened and therefore of no conservation significance.

Distribution
This species is restricted to the north-western Kimberley of the study region. Leptosia nina does not occur elsewhere in Australia and its presence in the region was detected only as recently as 1980 (Common and Waterhouse 1981; Naumann et al. 1991). It occurs only in the higher rainfall areas of the Kimberley (> 1,100 mm mean annual rainfall). Outside the study region, L. nina occurs throughout South-East Asia.

The subspecific status has not been determined, although Sands and New (2002) attributed the population to L. nina comma Fruhstorfer, 1902. However, Australian material appear to represent an undescribed subspecies because they differ from the two nearest subspecies in South-East Asia—L. nina comma from Timor to Tanimbar and L. nina fumigata Fruhstorfer, 1902 from Lombok to Flores—according to the diagnosis of Yata (1985).

Excluded data
Dunn and Dunn (1991) listed the species from Sandfire Flat, south of Broome, WA, based on a possible sighting made in 1979, but this record is considered erroneous because of its location, habitat and lack of voucher material (Braby 2000).
Narrow-winged Pearl-white

Elodina padusa (Hewitson, 1853)

Distribution
This species occurs widely in the study region. It occurs mainly in semi-arid areas (south of latitude 13°S), reaching its northernmost limit at Kakadu National Park (Mary River Ranger Station), NT. In the semi-arid zone, it has been recorded as far south as Three Ways Roadhouse 25 km north of Tennant Creek, NT. It also extends into the arid zone of central Australia beyond the southern boundary of the study region. Its geographic range closely corresponds with the spatial distribution of its larval food plant, which is absent from the higher rainfall areas of the Top End (> 1,300 mm mean annual rainfall), where there are no records of *E. padusa*. Outside the study region, *E. padusa* occurs in the Pilbara of Western Australia and widely in central and eastern Australia.

Habitat
Elodina padusa breeds in mixed lancewood–vine thicket associations where the larval food plant grows as a large scrambling vine often reaching into the canopy (Braby 2011a). Adults have also been collected in mixed eucalypt woodland–monsoon vine thicket on rocky outcrops and riparian woodland with rainforest elements along rocky seasonal creeks and gullies, and they may well breed in these moister habitats, which are embedded within the savannah landscape.

Larval food plant
Capparis lasiantha (Capparaceae).

Seasonality
Adults have been recorded during most months of the year, but they are apparently more abundant during the mid dry season (May–July). The breeding phenology and seasonal history of the immature stages have not been recorded, but presumably the species breeds throughout the year. Smithers (1983b) did not list this species as a migrant, but Grund and Hunt (2001) noted adults on the Mitchell Plateau in the northern Kimberley, WA, migrating in large numbers in a southerly direction during June and July.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Elodina padusa

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)
Small Pearl-white
Elodina walkeri Butler, 1898

Habitat
Elodina walkeri breeds in semi-deciduous monsoon vine thicket in both coastal and inland areas, particularly on rocky outcrops, where the larval food plant grows as a scrambling vine.

Larval food plant
Capparis sepiaria (Capparaceae).

Seasonality
Adults occur throughout the year. They appear to show little seasonal variation in abundance, although they tend to be more numerous during the wet season (November–February)—possibly depending on the timing and amount of rainfall—and again in the mid dry season (July). Franklin (2011) found similar trends near Darwin, NT, based on quantitative studies conducted over 14 months during 2008–09. The immature stages have been recorded sporadically throughout the year, suggesting the species breeds continuously, with several generations completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
7. Whites and Yellows

Elodina walkeri

- Specimen \(1970\)
- Observation \(1973\)
- Literature \(1979\)
- Literature \(1970\)
- Larval food plant

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
White Albatross
Appias albina (Boisduval, 1836)

Larval food plant
Drypetes deplanchei (Putranjivaceae).

Seasonality
Adults are seasonal, occurring only during the wet season (January–March). They are most abundant in January and February during or just after the monsoon rains, and in good wet seasons of average or above average rainfall they may be particularly abundant for a few weeks. Breeding is strictly seasonal, with the immature stages recorded only during the wet season (January–April), when the larval food plant produces flushes of new soft leaf growth. It is not clear how the species survives the dry season; it is suspected the pupae remain in diapause for many months, but pupae reared from larvae in captivity at the end of the flight season developed directly and produced adults in March and April. Alternatively, it is possible that populations in the Northern Territory are temporary, with adults migrating from South-East Asia followed by a return flight of the next generation at the end of the wet season, but this has not been confirmed.

Breeding status
Appias albina albina is assumed to be resident in the study region, whereas *A. albina infuscata* is a rare vagrant from Indonesia and is non-resident.

Conservation status
Appias albina albina: LC. *Appias albina infuscata*: NA. The subspecies *A. albina albina* has a narrow range in the study region (geographic range = 22,370 sq km) within which it occurs in several conservation reserves, including East Point Reserve, Casuarina Coastal Reserve and Garig Gunak Barlu National Park on Cobourg Peninsula, NT. Despite its restricted occurrence, there are no known threats facing the taxon.
Yellow Albatross

Appias paulina (Cramer, [1777])

Distribution

This species is represented in the study region by the subspecies *A. paulina ega* (Boisduval, 1836). It has a disjunct distribution, occurring mainly in the higher rainfall areas (> 1,100 mm mean annual rainfall) of the north-western Kimberley and in the Top End. The geographic range corresponds well with the spatial distribution of its larval food plant. However, *A. paulina* has been recorded substantially further south in the Kimberley, at Cockatoo Island and Derby, WA (Warham 1957), and in the western Gulf Country at Doomadgee, Qld (Puccetti 1991). Presumably, these records, if reliable, represent vagrant individuals that have dispersed beyond the normal breeding range. The larval food plant also occurs in the Tiwi Islands and Sir Edward Pellew Group, NT; thus, further field surveys are required to determine whether *A. paulina* occurs in these areas. Outside the study region, *A. paulina* occurs widely from India and South-East Asia, through mainland New Guinea and adjacent islands and eastern Australia to Samoa.

Excluded data

Bailey and Richards (1975) recorded this species from the Prince Regent Nature Reserve (Mt Trafalgar, Site W4), WA; however, examination of their material in the WADA indicated the specimen had been misidentified and was in fact a female *Cepora perimale*—a species they did not record.

Habitat

Appias paulina breeds in semi-deciduous monsoon vine thicket in both coastal and inland areas and evergreen monsoon vine forest associated with permanent freshwater streams where the larval food plant grows as a tall shrub or small tree.

Larval food plants

Drypetes deplanchei (Putranjivaceae). In addition, a female was observed laying several eggs on new leaf shoots of *Capparis sepiaria* (Capparaceae) at Black Point on Cobourg Peninsula, NT (Braby 2011a); however, the suitability of this vine as a food plant requires confirmation.

Seasonality

Adults occur throughout the year, but they are most abundant during the wet season (December–March), with a peak in abundance in February. The immature stages have also been recorded during the wet season (November–April) and, like *Appias albina*, the larvae feed only on the new soft leaves and shoots of the food plant. It is not known whether the species breeds continuously throughout the year (and uses alternative food plants during the dry season), reproductive activity declines or females stop breeding as the dry season progresses or breeding is strictly seasonal and the immature stages (e.g. pupa) remain in diapause, with adults emerging spasmodically during the dry season, similar to that seen in *Graphium eurypylus*. Although adults are known to be migratory (Smithers 1983b), we have no records of population movements.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Appias paulina

Relative abundance (%)

Month

Appias paulina (n = 119)

Relative abundance (%)
Caper White

Belenois java (Linnaeus, 1768)

Distribution
This species is represented in the study region by the subspecies *B. java teutonia* (Fabricius, 1775). It occurs throughout the region, as well as the arid zone of central Australia beyond the southern boundary of the study region—its broad geographic range closely matching the spatial distribution of its larval food plants. Surprisingly, there are no records of *B. java* from the Tiwi Islands, NT, despite the presence of the food plants in this area. Outside the study region, *B. java* occurs from the Lesser Sunda Islands, through mainland New Guinea and adjacent islands to the islands of the South Pacific. It also occurs throughout the Australian continent.

Habitat
Belenois java breeds in a variety of habitats, particularly savannah woodland and semi-deciduous monsoon vine thicket where the larval food plants grow as scrambling vines or small trees.

Larval food plants
Capparis jacobsii, C. lasiantha, C. sepiaria, C. umbonata (Capparaceae).

Seasonality
Adults occur throughout the year, but they are most abundant from the late dry season to the mid wet season (September–January). In the Darwin area, they are seasonal in appearance; adults usually arrive during migration (with adults generally flying in a north–north-westerly or north-westerly direction) during the ‘build-up’ in September or October; they breed for a few months, during which several overlapping generations are completed and they may be extremely abundant; and then disappear by January (Braby 2016b). During the remainder of the year (February–August), adults and immatures are infrequent and usually absent in Darwin, although on one occasion the immature stages (eggs and larvae) were recorded in March during an influx of adults. Further work is needed to determine whether the patterns of seasonal migration and breeding in the Darwin area are replicated elsewhere in the northern coastal areas of the Kimberley and Top End.

Breeding status
This species is resident in the study region; however, in the northern parts of the range, the species is an immigrant and the populations are temporary.

Conservation status
LC.
Belenois java

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1979
- Literature ≥1979
- Larval food plants

Belenois java

- Specie record
- Geographic range
 - Phyogeographical boundary
 - IBRA bioregional boundary

Belenois java (n = 175)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)

- J: 10
- F: 5
- M: 5
- A: 10
- M: 10
- J: 5
- J: 10
- A: 15
- S: 15
- O: 15
- N: 15
- D: 15
Caper Gull
Cepora perimale (Donovan, 1805)

Habitat
Cepora perimale breeds in a variety of habitats, particularly semi-deciduous monsoon vine thicket and savannah woodland where the larval food plants grow as strangling vines, shrubs or small trees. It also breeds along the edges of evergreen monsoon vine forest and in mixed mangrove–monsoon forest associations along the banks of perennial streams and rivers.

Larval food plants
Capparis jacobsii, C. sepiaria, C. umbonata (Capparaceae).

Seasonality
Adults occur throughout the year, but they are most abundant during the early dry season (April–June) and least abundant during the late dry season (August–October). The immature stages have been recorded during all months except August, indicating that it breeds continuously throughout the year, during which several generations are completed.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species occurs widely in the study region. It occurs widely in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 600 mm mean annual rainfall). It reaches its southernmost limits at Broome, WA (Williams et al. 2006); Montejini Station 43 km south–southwest of Top Springs, NT; and Boodjamulla/Lawn Hill National Park (Lawn Hill Gorge), Qld (Daniels and Edwards 1998; Franklin 2007). The geographic range closely corresponds with the spatial distribution of its larval food plants, except for one food plant (*Capparis umbonata*), which extends further inland into the arid zone of central Australia. Outside the study region, *C. perimale* occurs from Sulawesi and Lombok, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to Vanuatu, New Caledonia, Fiji and Norfolk Island.

The subspecific status has not been determined; it may be *C. perimale scyllara* (Macleay, 1826) from eastern Australia, but the adults are phenotypically distinct.
Whites and Yellows

Cepora perimale

Specimen ≥1970
Observation ≥1970
Literature ≥1970
Specimen <1970
Literature <1970
Larval food plants

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Cepora perimale (n = 445)

Relative abundance (%) by month.
Mangrove Jezebel

Delias aestiva Butler, 1897

Distribution

This species is represented by the subspecies *D. aestiva* Butler, 1897, which is endemic to the study region. It occurs in the Top End, where it is restricted to coastal areas north of latitude 15ºS. The geographic range corresponds well with the spatial distribution of its known and putative larval food plants (*Excoecaria* spp.). The food plants, however, are far more extensive, occurring in coastal areas throughout the Kimberley and western Gulf Country. Further field surveys are therefore required to determine whether *D. aestiva* also occurs in these areas. Inland records from Adelaide River and Daly River (Ooloo crossing) (Hutchinson 1978), NT, probably represent vagrants that dispersed upstream along rivers. Outside the study region, *D. aestiva* occurs in the Gulf Country of western Cape York Peninsula, Qld.

The subspecies *D. aestiva smithersi* (Daniels 2012) occurs in the Gulf of Carpentaria at Karumba, Qld, just outside the boundary of the study region (Daniels 2012; Braby 2014b); thus, further field surveys are required to determine whether it extends further west into the Northern Territory.

Excluded data

Warham (1957) listed the species (under the name *D. mysis*) from Derby, Cockatoo Island and Wotjalam Mission (on the mainland to the eastern end of Koolan Island) in Yampi Sound, WA. Braby (2012b), however, considered these records to be unreliable on the basis that no vouchered specimens were retained, the butterfly was likely to have been confused with *D. argenthona*—a common and widespread species that occurs on Koolan Island (see McKenzie et al. 1995), but which was absent from Warham’s list—and there have been no subsequent records from these areas for more than 50 years. More recently, Sands and New (2002) recorded the species in the Kimberley based on observations at Cape Leveque (in moist eucalypt woodland) and the Mitchell Plateau, WA; however, these locations/habitat do not accord with the biology of the species.

Habitat

Delias aestiva breeds in the landward edge of mangroves in coastal estuarine areas where the larval food plant grows as a deciduous tree (Braby 2012c). Adults frequently disperse into adjacent habitats such as paperbark woodland, monsoon vine thicket and even suburban parks and gardens, but they do not breed in these habitats.

Larval food plants

Excoecaria ovalis (Euphorbiaceae); probably *Excoecaria agallocha*.

Seasonality

Adults have been recorded during most months of the year, but they are most abundant during the dry season (particularly July–September). In some years, they may also be very abundant during the late wet season and early dry season (March–May), possibly depending on the timing of the last monsoon rains. They are generally scarce and often absent during the early wet season (November and December or January), when the larval food plant is seasonally deciduous. The immature stages (eggs or larvae) have been recorded mainly in the dry season (April–October), during which several generations are completed, with larvae feeding only on the mature foliage. It is not known how the species survives the period of food shortfall during the pre-monsoon ‘build-up’, but it is likely it remains in pupal diapause (Braby 2012c).

Breeding status

This species is resident in the study region.

Conservation status

LC. The subspecies *D. aestiva aestiva* has a restricted range within which it occurs in several conservation reserves, including Casuarina Coastal Reserve, Djukbinj National Park, Kakadu National Park and Djelk and Laynhapuy IPAs.
7. WHITE AND YELLOWS

Delias aestiva

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plant
- Pulsative larval food plant

Delias aestiva (n = 95)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Red-banded Jezebel
Delias mysis (Fabricius, 1775)

Distribution
This species is represented in the study region by the subspecies *D. mysis mysis* (Fabricius, 1775). It is known only from a single historical male specimen from Groote Eylandt in the Gulf of Carpentaria (Talbot 1928–37). Braby (2012c) reexamined this specimen and concluded it was *D. mysis mysis*, a subspecies otherwise endemic to the Wet Tropics and nearby areas of north-eastern Queensland. The putative larval food plant (*Dendrophthoe glabrescens*) occurs widely in the Kimberley and Top End. Outside the study region, *D. mysis* occurs in the Aru Islands, south-eastern West Papua and north-eastern Australia.

Habitat
The breeding habitat of *D. mysis* has not been recorded in the study region.

Larval food plants
Not recorded in the study region; possibly *Dendrophthoe glabrescens* (Loranthaceae), which is one of the food plants in north-eastern Queensland (Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The single specimen was collected in January 1926.

Breeding status
Delias mysis does not appear to have become permanently established in the study region. It is likely the specimen from Groote Eylandt represents a vagrant that dispersed from north-eastern Queensland across the Gulf of Carpentaria; however, the possibility it may have been mislabelled, and therefore the locality erroneous, should not be discounted.

Conservation status
NA.
Scarlet Jezebel
Delias argenthona (Fabricius, 1793)

Distribution
This species is represented by the subspecies Delias argenthona fragalactea (Butler, 1869), which is endemic to the study region. It occurs throughout the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 700 mm mean annual rainfall). Its southernmost limits are Fitzroy Crossing, WA (Common and Waterhouse 1981), and Doomadgee, Qld (Puccetti 1991). Although the larval food plants are more widespread, particularly in the semi-arid areas, it is considered unlikely that Delias argenthona is established in the hot, dry inland areas. Outside the study region, Delias argenthona occurs in south-eastern New Guinea and eastern Australia.

The subspecies Delias argenthona argenthona (Fabricius, 1793) occurs in the Gulf of Carpentaria at Walker Creek 36 km east of Karumba, Qld, just outside the eastern boundary of the study region (Braby 2015d). Further field surveys are therefore required to determine whether it extends further west or is continuous in extent with Delias argenthona fragalactea.

Habitat
Delias argenthona typically breeds in a variety of woodland and open woodland habitats where the larval food plants grow as mistletoes (parasitic shrubs) on various trees, including Eucalyptus, Alstonia, Erythrophleum and Grevillea (Braby 2011a, 2015e). It also breeds in suburban parks and gardens.

Larval food plants
Amyema miqueli, A. sanguinea, Decaisnina signata, Dendrophthoe glabrescens, Dendrophthoe odontocalyx (Loranthaceae). Decaisnina signata is commonly used in suburban areas in Darwin, NT, where it frequently parasitises Alstonia actinophylla (Wade 1978; Anderson and Braby 2009).

Seasonality
Adults occur throughout the year, but they are most abundant during the dry season (June–October), with a substantial peak in abundance in August. The immature stages have been recorded during most months, with larvae detected most frequently in August, indicating the species breeds throughout the year. Presumably, several overlapping generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
7. WHITES AND YELLOWS

Delias argenthona

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Delias argenthona

- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Delias argenthona (n = 152)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Nymphs
(Nymphalidae)
Purple Beak
Libythea geoffroyi Godart, 1822

Distribution
This species is represented by the subspecies *L. geoffroyi genia* Waterhouse, 1938, which is endemic to the study region. It occurs widely but sporadically in the Kimberley and the western half of the Top End, as well as on Rimbija Island in the Wessel Islands, NT. It is locally common in the Kimberley, such as at Windjana Gorge (Williams et al. 2006) and Kalumburu (Yeates 1990), WA, but much rarer in the Northern Territory, where only a few specimens have been recorded from five locations: Judbarra/Gregory National Park (Limestone Gorge) (Braby 2014a), Fish River Station (Braby and Kessner 2012), Palmerston (Meyer et al. 2006), Darwin (Waterhouse and Lyell 1914; Waterhouse 1938) and Rimbija Island (Common and Waterhouse 1981). The geographical range of *L. geoffroyi* corresponds with the spatial distribution of its larval food plant. However, the food plant, although patchy in extent, is far more widely distributed, occurring in the western Gulf Country and coastal areas of the north of the Northern Territory. Further field surveys are therefore required to determine whether *L. geoffroyi* occurs in western Queensland and adjacent areas in the Northern Territory, and elsewhere in the northern coastal areas of the Top End. Outside the study region, *L. geoffroyi* occurs from South-East Asia, through mainland New Guinea and north-eastern Australia to the Bismarck Archipelago, the Solomon Islands, New Caledonia and the Loyalty Islands.

Habitat
Libythea geoffroyi breeds in patches of semi-deciduous monsoon vine thicket on rocky outcrops or gorges composed of limestone, sandstone or basalt usually protected from fire where the larval food plant grows as a small tree in high density (Braby 2014a). Adults have also been collected in coastal areas of higher rainfall (> 1,100 mm mean annual rainfall) where a distinct larger-leaved variety with glabrous, ovate or oblong leaves of the food plant grows on lateritic cliffs and sand dunes; presumably, *L. geoffroyi* also breeds in these habitats.

Larval food plant
Celtis australiensis (Cannabaceae).

Seasonality
Adults are seasonal, occurring from January to August. They are most abundant during the late wet season, particularly in March, when they are usually in fresh condition (Williams et al. 2006; Meyer et al. 2013; G. Swann), after which their abundance appears to steadily decline as the dry season progresses. The breeding phenology and seasonal history of the immature stages are not known. Braby (2014a) found an empty pupal shell in good condition on the underside of a leaf of the larval food plant in early May, indicating recent adult emergence. In northern Queensland, the larvae feed only on new soft leaves following the first substantial rainfall event at the end of the dry season (Johnson and Valentine 1988, 1989). Thus, in northern
Australia it is likely the species breeds seasonally during the height of and/or just after the wet season, when *C. australiensis* produces new leaf growth in response to monsoon rains; however, it is not clear how the species survives the nongrowing period during the dry season, when the leaves are tough and nonedible to larvae. Presumably, only one or two generations are completed annually. Overseas, other species of *Libythea* remain in adult diapause during the nonbreeding period, but this behaviour has not been observed during the late dry season in northern Australia and thus it is not clear whether this strategy is adopted by *L. geoffroyi*. It is possible the eggs—which are tiny and concealed deep within the axils of leaf buds—remain in diapause during the long dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC. The subspecies *L. geoffroyi* genia in the Northern Territory has a restricted range, with two locations occurring in conservation reserves: Fish River and Judbarra/Gregory National Park. Some areas within the overall range may be impacted by inappropriate fire regimes, particularly an increase in the frequency and severity of dry season burns. The habitat is highly susceptible to fire and the larval food plant is intolerant of, or sensitive to, fire.
Libythea geoffroyi

Relative abundance (%)

Month
Libythea geoffroyi (n = 32)

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | | | |
Larva | | | | | | | | | | | | | |
Pupa | | | | | | | | | | | | | |
Adult | | | | | | | | | | | | | |
Blue Tiger
Tirumala hamata (W. S. Macleay, 1826)

Distribution
This species occurs in the Kimberley, Top End and western Gulf Country of the study region. It occurs mainly in the higher rainfall areas (> 900 mm mean annual rainfall), but it has been recorded from drier inland areas (700–800 mm), where it reaches its southernmost limits at Koolan Island in Yampi Sound (McKenzie et al. 1995), Kununurra (Koch 1957), WA; Limmen National Park (Butterfly Springs), NT (Franklin 2007); and Doomadgee, Qld (Puccetti 1991). Its geographic range corresponds well with the spatial distribution of its larval food plants, although the plants extend considerably further inland. Outside the study region, *T. hamata* occurs from South-East Asia, through mainland New Guinea and adjacent islands and eastern Australia to the Solomon Islands, Fiji, Tonga and Samoa.

Habitat
Tirumala hamata breeds in both wet and dry monsoon forests, including evergreen monsoon vine forest and semi-deciduous monsoon thicket, where the larval food plants grow as vines (Forster and Martin 1990; Braby 2015e).

Larval food plants
Cynanchum carnosum, *Marsdenia glandulifera*, *M. velutina*, *Secamone elliptica* (Apocynaceae). The main larval food plant appears to be *S. elliptica* (Forster and Martin 1990), but larvae have also been found and reared on *M. glandulifera* (Braby 2015e), *M. velutina* and *C. carnosum* (Forster and Martin 1990).

Seasonality
Adults occur throughout the year and they do not appear to show any pronounced seasonal changes in abundance. They are generally observed in comparatively low numbers, do not migrate and do not form large overwintering aggregations, unlike the populations in north-eastern Queensland (see Monteith 1982; Scheermeyer 1993, 1999). The breeding phenology is not well understood for northern Australia, but the following observations suggest the breeding season is limited to a short period during the wet season. At Fogg Dam, NT, the immature stages were recorded during the ‘build-up’ (October and November) of high moisture and high temperatures, when the larval food plant (*Marsdenia glandulifera*) was producing new soft leaves on which the eggs were laid and larvae were feeding (Braby 2015e). Near Darwin, NT, Forster and Martin (1990: 131) noted that on *M. velutina* ‘eggs are laid only on the fresh young leaves which are available only in the wet season’. During the dry season, adults have been recorded overwintering in relatively small numbers with *Euploea* spp. in moist refuges, mainly confined to areas of deep shade, in the Prince Regent Nature Reserve in the western Kimberley, WA (Bailey and Richards 1975). Presumably, the species stops breeding during the long dry season, similar to populations in northern Queensland (Scheermeyer 1993).

Breeding status
This species is resident in the study region.

Conservation status
LC.
Tirumala hamata

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1979
- Specimen <1970
- Literature <1979
- Larval food plants

Tirumala hamata

- Species record
- Geographic range
- Phylogeographical boundary
- IBRA bioregional boundary

Tirumala hamata (n = 109)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Plain Tiger
Danaus chrysippus (Linnaeus, 1758)

Distribution
This species is represented in the study region by the subspecies *D. chrysippus cratippus* (C. Felder, 1860). It is restricted to the northern coastal areas of the Top End, where it has been recorded from several sites on Cobourg Peninsula (Black Point, 2 km east–northeast of Black Point and Smith Point) (Braby 2014a; Braby et al. 2015) and in Darwin (Braby 2015c), NT. Outside the study region, *D. chrysippus* occurs widely in Africa, India and South-East Asia.

Habitat
The breeding habitat of *D. chrysippus* has not been confirmed, but most adults have been collected in coastal paperbark swampland bordering freshwater lagoons where the putative larval food plant (*Cynanchum carnosum*) grows as a vine in high density (Braby 2014a). In addition, a freshly emerged female was collected from this habitat and an empty pupal shell (possibly this species) was found within a metre of the female; another female was observed flying close to the ground searching the putative food plant but did not oviposit. Also, males have been observed to establish mate-location behaviour by perching close to the ground on reeds and dead branches for short periods.

Larval food plants
Not recorded in the study region; possibly *Cynanchum carnosum* (Apocynaceae) (Braby 2014a).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults are seasonal, occurring only during the wet season (January–April). Most specimens have been collected in February and March, but there are too few records (*n* = 10) to assess seasonal changes in abundance.

Breeding status
Danaus chrysippus does not appear to have become permanently established in the study region. It is most likely a vagrant or a rare immigrant from South-East Asia, occasionally colonising the region and breeding temporarily during favourable conditions (Braby et al. 2015).

Conservation status
NA.
Danaus chrysippus

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | |
Larva | | | | | | | | | | | |
Pupa | | | | | | | | | | | |
Adult | | | | | | | | | | | |

Photo: Black Point, Cobourg Peninsula, NT, M.F. Braby
Distribution
This species occurs almost throughout the entire study region. It extends from moist coastal areas to drier inland areas of the semi-arid zone, as well as in the arid zone of central Australia beyond the southern boundary of the study region. The spatial distribution of the known native larval food plants is similarly widespread, although they are less well represented in the semi-arid and arid zones, indicating that several other (as yet unreported) food plants are probably used in these areas in addition to the introduced larval food plant (*Calotropis procera*). Outside the study region, *D. petilia* occurs in mainland New Guinea, throughout Australia and the islands of the South Pacific.

Habitat
Danaus petilia occurs in a wide variety of habitats, but it breeds mainly in savannah woodland and paperbark woodland where the larval food plants grow as evergreen or seasonal perennial vines.

Larval food plants
Brachystelma glabriflorum, Cynanchum carnosum, C. christinae, C. leithianum, C. pedunculatum, Oxystelma esculentum, Tylophora flexuosa (Apocynaceae); also *Calotropis procera* (Apocynaceae); possibly *Cynanchum floribundum, Marsdenia australis* and *Rhyncharrhena linearis* (Apocynaceae), which are food plants in the arid areas of South Australia and Queensland (Braby 2000).

Seasonality
Adults occur throughout the year, but are generally more abundant towards the end of the wet season (April) and least abundant in the late dry season (September and October). The immature stages are found mainly during the wet season (November–April), when the larval food plants produce new shoots and buds (Forster 1991), but breeding may continue until at least the mid dry season (July). However, it is not clear whether breeding is seasonal and most females stop breeding during the late dry season or breeding continues but reproductive activity declines as the dry season progresses. Although it is a well-known migrant (Smithers 1983a), we have no records of migratory flights in the study region.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Danaus petilia

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants
- Putative larval food plants.

Danaus petilia (n = 695)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)
Orange Tiger

Danaus genutia (Cramer, [1779])

Distribution

This species is represented by the subspecies *D. genutia alexis* (Waterhouse & Lyell, 1914), which is endemic to the study region. *Danaus genutia* does not occur elsewhere in Australia. It has a restricted and possibly disjunct distribution, occurring mainly in the eastern Kimberley and the north-western corner of the Top End. There is also a historical record from Derby in the western Kimberley, WA (Waterhouse and Lyell 1914), and an isolated population at Mataranka, NT, which is associated with the upper headwaters of the Roper River (McCubbin 1971; Le Souëf 1971). The geographic range broadly corresponds with the spatial distribution of the larval food plant, which likewise is restricted in extent; however, this plant is absent from Mataranka, indicating that an alternative (as yet unreported) food plant is used at this location. Outside the study region, *D. genutia* occurs widely in India, southern China and South-East Asia, although it is absent from Maluku.

Larval food plant

Oxystelma esculentum (Apocynaceae).

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded sporadically during the year; they have been noted to be abundant during the mid dry season (July) (McCubbin 1971) and late dry season (October) (Field 1990b), as well as in the wet season (December and April) (Meyer 1995). Our data suggest a peak in abundance in July. Presumably, adults occur throughout the year; the paucity of records during the wet season (January–March) is probably related to the fact that the breeding habitats are frequently inaccessible at that time of year. However, it remains to be determined whether they breed seasonally or continuously throughout the year.

Breeding status

This species is resident in the study region.

Conservation status

LC. Despite the wide geographical range of the subspecies *D. genutia alexis*, available data suggest it has a disjunct distribution with a restricted AOO. The larval food plant is currently listed as DD under the *TPWCA*. Further field data are needed on the ecological requirements of this species, particularly its critical habitat and larval food plants in noncoastal areas of range.
Danaus genutia

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plant

Relative abundance (%)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Swamp Tiger

Danaus affinis (Fabricius, 1775)

Distribution
This species is represented in the study region by the subspecies *D. affinis affinis* (Fabricius, 1775). It occurs from the Kimberley, through the Top End to coastal and near-coastal areas in the western Gulf Country, generally in areas that receive more than 800 mm mean annual rainfall. The larval food plants are more widely distributed, particularly *Marsdenia viridiflora*, which extends further south into the semi-arid zone, but it is considered unlikely that *D. affinis* is established in these areas. Outside the study region, *D. affinis* occurs sporadically from South-East Asia, through mainland New Guinea and adjacent islands and eastern Australia to the Solomon Islands, Vanuatu and New Caledonia.

Habitat
Danaus affinis breeds mainly in paperbark swampland and paperbark woodland adjacent to swamps in coastal areas, often associated with estuarine creeks and rivers, where its primary larval food plant (*Cynanchum carnosum*) grows as a vine. However, in the more inland areas, it breeds in eucalypt open forest where alternative food plants grow (Braby 2015e), as well as paperbark swamps adjacent to perennial freshwater rivers where *C. carnosum* grows.

Larval food plants
Cynanchum carnosum, Marsdenia viridiflora, Sarcolobus hullii (Apocynaceae). The main food plant is *C. carnosum*.

Seasonality
Adults occur throughout the year and show little seasonal variation in abundance, although they are generally more abundant in the early dry season (April–June), when they may be exceedingly common. The immature stages, like *Danaus petilia*, have only been recorded during the wet season (November–April), during which several generations are completed. However, it is not clear whether breeding is seasonal and most females stop breeding and remain in reproductive diapause during the dry season or breeding continues but reproductive activity declines as the dry season progresses.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Danaus affinis

- **Relative abundance (%)**
- **Month**

Danaus affinis
- **Specimen ≥1970**
- **Observation ≥1970**
- **Literature ≥1970**
- **Specimen <1970**
- **Literature <1970**
- **Larval food plants**

Danaus affinis
- **Species record**
- **Geographic range**
- **Phylogeographical boundary**
- **IBRA bioregional boundary**

Danaus affinis (n = 548)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Monarch
Danaus plexippus (Linnaeus, 1758)

Distribution
This species has been recorded sporadically from the study region, including Kununurra, WA (Dunn 1980); near Darwin, Kakadu National Park (South Alligator River) and 50 km south–south-east of Elliott, NT; and from several locations in the western Gulf Country (Braby 2014a). Most of the records for the Northern Territory and Queensland were made when a large-scale migration occurred during April–May 2013 (Braby 2014a). It has also been recorded 40 km north–north-east of Burke & Wills Roadhouse, Qld, on the eastern boundary of the study region (Dunn 2015a). More recently, a female specimen in worn condition flying in a northerly direction was netted at Humpty Doo, NT, on 26 September 2016 (K. McLachlan). Two earlier records from near Darwin (Holmes Jungle Conservation Park, 5 March 2013; Gunn Point, 30 November 2013) previously thought to be deliberate introductions (see Braby 2014a) are tentatively accepted as natural occurrences; the record for Holmes Jungle may have been part of the north-west migration observed two months later, in May 2013. The putative larval food plant (*Asclepias curassavica*) is cultivated in and near Darwin, NT. Outside the study region, *D. plexippus* occurs widely in eastern and southern Australia. It is native to the New World, but became established in Australia in the 1870s.

Excluded data
A record from Darwin, NT (Bullocky Point, 2 September 2009), is an artificial introduction based on a wedding butterfly release (Braby 2014a) and is therefore excluded. An observation made at Kununurra, WA, by Dunn (1980) was considered doubtful by Braby (2012b) because at that time the species was not known elsewhere in the study region and it may have been confused with the similar looking *Danaus genutia*, which occurs commonly at the location. However, K. L. Dunn (pers. comm.) advises that the specimen was observed at close proximity, enabling it to be readily distinguished by its large size and characteristic wing pattern.

Habitat
The breeding habitat of *D. plexippus* has not been recorded in the study region.

Larval food plants
Not recorded in the study region; possibly *Asclepias curassavica* (Apocynaceae) and other introduced and naturalised species of milkweeds, which are the food plants in Queensland (Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded sporadically during the year, but there are too few records (n = 13) to assess any seasonal changes in abundance.

Breeding status
Danaus plexippus does not appear to have become permanently established in the study region. It is most likely a vagrant or infrequent visitor, entering the region occasionally during migration, but it remains to be determined whether it colonises and breeds temporarily.

Conservation status
NA.
8. NYMPHS

Danaus plexippus

- Specimen ±1970
- Observation ±1970
- Literature ±1970

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Photo: Nourlangie Rock, Kakadu National Park, NT, M.F. Braby
Two-brand Crow
Euploea sylvester (Fabricius, 1793)

The subspecies E. sylvester sylvester (Fabricius, 1793) occurs in the Gulf of Carpentaria at Walker Creek 36 km east of Karumba, Qld, just outside the eastern boundary of the study region (Braby 2015d), and further surveys are required to determine whether it extends further west.

Habitat

Euploea sylvester breeds in semi-deciduous monsoon vine thicket and riparian evergreen monsoon vine forest along the banks of rivers where the larval food plants grow as vines (Meyer 1997a).

Larval food plants

Marsdenia geminata, Parsonsia alboflavescens (Apocynaceae). The main food plant is M. geminata (Meyer 1997a), but they occasionally use P. alboflavescens on Gove Peninsula, NT (Braby 2011a).

Seasonality

Adults occur throughout the year. They appear to show little seasonal variation in abundance, although at Darwin, NT, Meyer (1997a) noted that adults were most numerous during the late wet season (late February and March). Breeding is seasonal, limited mainly to the wet season (December–January or April, depending on location), although on one occasion the immature stages were found in July on Gove Peninsula, where the wet season is protracted. During the dry season, females generally stop breeding and aggregate in small numbers in moist refuges, such as the deep shade within pockets of monsoon forest (Monteith 1982; Scheermeyer 1993).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Small Brown Crow
Euploea darchia W. S. Macleay, 1826

Habitat
Euploea darchia breeds in coastal semi-deciduous monsoon vine thicket and riparian evergreen monsoon vine forest along the banks of rivers where the larval food plant grows as a vine (Meyer 1996d).

Larval food plant
Trophis scandens (Moraceae).

Seasonality
Adults occur throughout the year, but their patterns of seasonal changes in abundance are not entirely clear. Near Darwin, NT, Meyer (1996d, and pers. comm.) noted that adults were freshly emerged and more abundant from February to May, and Franklin (2011) similarly found the species to be more abundant during the mid wet season and early dry season (January–May) based on quantitative studies conducted over 14 months during 2008–09. Our data suggest it is more abundant during the mid dry season and early wet season (June–November), but this may be due to biased sampling at that time of year when adults tend to aggregate in moist refuges, such as the deep shade in pockets of monsoon forest. Breeding, as for *Euploea sylvester*, is strictly seasonal and limited to the wet season (January–April).

Breeding status
This species is resident in the study region.

Conservation status
LC.
Common Crow

Euploea corinna (W. S. Macleay, 1826)

Larval food plants

Gymnanthera oblonga, Ichnocarpus frutescens, Maridenia geminata, M. viridiflora, Parsonsia alboflavescens, Sarcolobus hullsi, Sarcostemma viminale, Secamone elliptica (Apocynaceae), _Ficus virens_ (Moraceae); also *Adenium obesum* (Apocynaceae). The larvae feed on many food plants, but they are most frequently found on _G. oblonga._

Seasonality

Adults occur throughout the year but show little seasonal variation in abundance, although they tend to be more abundant during the late wet season and early dry season (April–June). During the dry season (April–August), they aggregate in moist refuges—typically pockets of monsoon forest in sheltered gorges or as gallery forest along water courses, where they may be observed in immense numbers clustered on tree foliage, the trunks and roots of fig trees and sheltered rock faces, especially in the more inland areas (Le Souëf 1971; Bailey and Richards 1975; Monteith 1982). During the dry season aggregations, most females do not breed; however, the immature stages may be found throughout the year, indicating that some females continue to breed depending on local conditions—similar to that reported in Queensland (Scheermeyer 1993).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Euploea corinna

Month

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
No-brand Crow, Gove Crow

Euploea alcathoe (Godart, [1819])

Distribution

This species is represented by the subspecies *E. alcathoe enastri* Fenner, 1991, which is endemic to the study region. It occurs in the Top End, its presence in the region detected only as recently as 1988 (Fenner 1991). It is restricted to Gove Peninsula, NT, where it occurs in lowland coastal or near-coastal areas. Its geographic range closely corresponds with the spatial distribution of its primary larval food plant (*Parsonsia alboflavescens*). This plant extends slightly further west to the Goyder River in Arnhem Land, but field surveys carried out at this location and nearby areas (Koolatong River) did not detect *E. alcathoe* (Braby 2010a). Outside the study region, *E. alcathoe* occurs from Maluku, the Kai and Aru islands, through mainland New Guinea to the D’Entrecasteaux Islands and the Torres Strait Islands, Qld (Lambkin et al. 2017).

Habitat

Euploea alcathoe breeds in mixed paperbark tall open forest with rainforest elements in the understory, usually in juxtaposition with evergreen monsoon vine forest, and in the edges of evergreen monsoon vine forest where the larval food plants grow as vines. Both breeding habitats are associated with perennial groundwater seepages or springs, usually along drainage lines or floodplains (Braby 2009, 2010a). The critical breeding habitats are subject to natural disturbance by both fire and flood, and occasionally cyclonic events.

Larval food plants

Gymnanthera oblonga, Marsdenia glandulifera, Parsonsia alboflavescens (Apocynaceae). The main food plant is *P. alboflavescens* (Braby 2009), but occasionally other species are used, including *G. oblonga, M. glandulifera* (Braby 2009) and possibly *Tylophora benthamii* (Fenner 1991).

Seasonality

Adults have been recorded during most months of the year, but their patterns of seasonal changes in abundance are not well understood. Adults have been recorded more frequently during the dry season (June–October), but this is due to a sampling bias because very little fieldwork has been conducted during the wet season, when the breeding habitats are largely inaccessible. Similarly, the immature stages have been recorded mainly during the dry season (June–October), as well as in the late wet season (March and April). Presumably, the species breeds continuously throughout the year and several generations are completed annually (Braby 2009).

Breeding status

This species is resident in the study region.

Conservation status

Near Threatened (NT). The subspecies *E. alcathoe enastri* is a short-range endemic (EOO = 9,100 sq km), with much of its range occurring within the Dhimurru and Laynhapuy IPAs. Braby (2010a) concluded there was no evidence of decline, but it was conservation-dependant in that management was required to mitigate threats from habitat modification through inappropriate fire regimes and disturbance by feral animals (buffalo and pig), while maintaining some level of natural disturbance. Moreover, the larval food plant is currently listed as NT under the *TPWCA*. Without management, the taxon may qualify for a threatened category in the near future because the population of *E. alcathoe enastri* is likely to be reduced based on a projected decline in the AOO and/or quality of its habitat (criterion A3c). Monitoring of the extent and/or quality of the critical habitat and occupancy of the butterfly is required for this species.
Euploea alcathoe

- **Specimen**: x1970
- **Observation**: x1973
- **Literature**: x1979
- **Larval food plants**

Relative abundance (%)

- **Euploea alcathoe**
 - **Specimen recorded**
 - **Geographic range**
 - **Physiogeographical boundary**
 - **IBRA bioregional boundary**

Graph showing relative abundance of Euploea alcathoe:

- **Month**:
 - J
 - F
 - M
 - A
 - M
 - J
 - J
 - A
 - S
 - O
 - N
 - D

- **Relative abundance (%)**:
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Climena Crow
Euploea climena (Stoll, [1782])

Habitat
The breeding habitat of E. climena has not been recorded in the study region.

Larval food plants
Not recorded in the study region. The larval food plant on Christmas Island is Hoya aldrichii (Apocynaceae), a vine that is absent from north-western Australia (Wilson and Johnson 2017).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The two specimens were apparently collected in November.

Breeding status
Euploea climena does not appear to have become permanently established in the study region. Presumably, it is a rare vagrant from Christmas Island.

Conservation status
NA.
Orange Lacewing
Cethosia penthesilea (Cramer, 1777)

Larval food plant
Adenia heterophylla (Passifloraceae).

Seasonality
Adults occur throughout the year, but they are most abundant from the late wet season to the mid dry season (April–August), with a peak in abundance in July. However, in some years or locations they may be very numerous during the mid wet season (January and February). Their numbers decline rapidly as the dry season progresses and very few adults are present during the late dry season and early wet season. Hall (1981) also noted that adults occur throughout the year, but are usually more common during the first half of the dry season (April–July). The immature stages have been recorded sporadically from the early wet season to the mid dry season (November–June). The larvae feed and develop rapidly on the new soft leaf growth and several generations are completed annually, but it is not clear how *C. penthesilea* survives the late dry season (August–October), when the foliage of the food plant is frequently absent. Presumably, the species remains in pupal diapause during the late dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species is represented in the study region by the subspecies *C. penthesilea paksha* Fruhstorfer, 1905. *Cethosia penthesilea* does not occur elsewhere in Australia. It is restricted to the Top End, where it occurs in the higher rainfall areas (> 800 mm mean annual rainfall, but mostly > 1,000 mm). Its southernmost limits are Katherine (Charles Darwin University) and Ngukurr (Normand 2009), NT, which are slightly drier areas. The geographic range closely follows the spatial distribution of its larval food plant in the Northern Territory. Although the food plant extends to the Kimberley, *C. penthesilea* is absent from this area. Outside the study region, *C. penthesilea* occurs in Java and the Lesser Sunda Islands, including Timor and its nearby islands.

Habitat
Cethosia penthesilea breeds in semi-deciduous monsoon vine thicket and the edges of evergreen monsoon vine forest in both coastal and inland areas where the larval food plant grows as a large, woody perennial deciduous vine on a variety of rocky substrates (Hall 1981).
Cethosia penthesilea

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plant

Cethosia penthesilea

- Specimen record
- Geographic range
- Phytoecological boundary
- IBA bioregional boundary

Cethosia penthesilea (n = 223)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)
Glasswing

Acraea andromacha (Fabricius, 1775)

Distribution

This species is represented in the study region by the subspecies *A. andromacha andromacha* (Fabricius, 1775). It occurs very widely throughout the region, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 500 mm mean annual rainfall), where it has been recorded as far south as the Edgar Ranges (Common 1981) and Halls Creek (Koch 1957), WA; Three Ways Roadhouse, NT (Dunn and Dunn 1991); and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998; Franklin 2007; Dunn 2015a). It also extends into the arid zone of central Australia beyond the southern boundary of the study region. The geographic range corresponds well with the spatial distribution of its larval food plants. Outside the study region, *A. andromacha* occurs from the Lesser Sunda Islands, through mainland New Guinea and the northern half of Australia to the Solomon Islands, New Caledonia, Fiji and Samoa.

Habitat

Acraea andromacha breeds in a variety of habitats, including savannah woodland and disturbed open woodland where the larval food plants (*Hybanthus* spp.) grow as seasonal perennial herbs, and coastal semi-deciduous monsoon vine thicket and riparian evergreen monsoon vine forest along perennial streams within gorges where the alternative food plant (*Adenia heterophylla*) grows as a large climbing vine. Males also congregate on hilltops to locate females, but they do not breed in these habitats.

Larval food plants

Adenia heterophylla (Passifloraceae), *Hybanthus aurantiacus*, *H. enneaspermus* (Violaceae); also *Passiflora foetida* (Passifloraceae).

Seasonality

Adults occur throughout the year, but they are most abundant during the mid dry season (May–July). Their numbers diminish as the dry season progresses, and they are very scarce at the start of the wet season. The immature stages (eggs or larvae) have been recorded sporadically from the early wet season to the mid dry season (November–July), and are not known to undergo diapause. Several generations are completed annually, but it is not clear how the species survives the late dry season (August–October), when the foliage of the larval food plants is frequently absent or reduced in quality. Presumably, populations contract to moister areas, such as along the margins of riverbanks and perennial creeks, where breeding may continue.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Acraea andromacha

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Tawny Coster
Acraea terpsicore (Linnaeus, 1758)

Distribution
This species occurs widely in the Kimberley and Top End of the study region and extends to the Northern Deserts. The geographic range of *A. terpsicore* has been expanding rapidly since it was first detected near Darwin, NT, in April 2012 (Braby et al. 2014a, 2014b). It has been recorded as far south as Broome, WA (G. Swann); Elliott (R. P. Weir) and Camfield Station at the northern edge of the Tanami Desert (J. Archibald), NT; and has recently been detected in the Gulf Country of western Cape York Peninsula (Kowanyama district), Qld (Wilson 2016), just outside the eastern boundary of the study region. Spatial modelling predicts that its range will eventually occupy the entire monsoon tropics of northern Australia, from moist coastal areas to drier inland areas of the semi-arid zone (c. 500 mm mean annual rainfall), which also coincides with the spatial distribution of its primary larval food plant (Braby et al. 2014b). Outside the study region, *A. terpsicore* occurs naturally in India and Sri Lanka, but it has now colonised Indochina, the Malay Peninsula, Borneo and the Greater and Lesser Sunda islands.

Habitat
Acraea terpsicore breeds mainly in savannah woodland and grassland, favouring modified or disturbed open areas, such as suburban roadsides, where the native larval food plant grows as a seasonal perennial herb (Braby et al. 2014b). Males also congregate on hilltops to locate females, but they do not breed in these habitats.

Larval food plants
Hybanthus enneaspermus (Violaceae); also *Passiflora foetida* (Passifloraceae). The main food plant is *H. enneaspermus*, but occasionally the larvae feed on introduced *P. foetida* (Braby et al. 2014b). In captivity, the larvae readily feed and develop successfully on *Adenia heterophylla*, but to date they are not known to use this plant in the field.

Seasonality
Adults occur during most months of the year, but they are most abundant during the wet season and early dry season (January–May). They become scarce as the dry season progresses (June–November) and are apparently absent in October. The immature stages have been recorded sporadically from the early wet season to the mid dry season (December–August), and are not known to undergo diapause. Several generations are completed annually, but it is not clear how the species survives the late dry season (September–November) when the foliage of both the native and the introduced larval food plants is frequently absent or reduced in quality. Presumably, populations contract to moister areas, such as along the margins of swamps and riverbanks, where breeding may continue.

Breeding status
Although *A. terpsicore* is resident in the study region, it has recently colonised the area (within the past six years) and its range is currently expanding outside the region in northern Queensland (Wilson 2016; Field 2017; Franklin et al. 2017).

Conservation status
NA.
Relative abundance (%) of Acraea terpsicore over the months from January to December. The chart shows a peak in relative abundance in the months of June and July.
Spotted Rustic

Phalanta phalantha (Drury, [1773])

Distribution

This species is represented by the subspecies *P. phalantha araca* (Waterhouse & Lyell, 1914), which is endemic to the study region. *Phalanta phalantha* does not occur elsewhere in Australia. It occurs in the north of the Northern Territory, where it is restricted to the higher rainfall areas (> 900 mm mean annual rainfall) of the north-western corner of the Top End. It reaches its southern limit at Flora River Nature Park and its easternmost limit at Kakadu National Park (Mt Brockman) (Kikkawa and Monteith 1980), NT. The geographical range broadly corresponds with the spatial distribution of its native larval food plant. The food plant, however, extends further east along the northern coast to Gove Peninsula; thus, further field surveys are required to determine whether *P. phalantha* occurs in north-eastern Arnhem Land. The isolated record from further south, at Daly Waters, NT, based on two specimens collected in January 1973 (A. Allwood and T. Weir), either constitutes vagrant specimens outside the normal breeding range or indicates that a temporary population became established on one of the introduced larval food plants cultivated in suburban gardens. Outside the study region, *P. phalantha* occurs widely in Africa, Madagascar, India, Japan and South-East Asia.

Habitat

Phalanta phalantha breeds mainly in semi-deciduous monsoon vine thicket where the native larval food plant grows as a semi-deciduous shrub. It also breeds in riparian woodland with rainforest elements in the understorey and the edges of evergreen monsoon vine forest along the banks of perennial streams, as well as in suburban parks and gardens.

Larval food plants

Flacourtia territorialis (Salicaceae); also *F. inermis*, *F. rukam* (Salicaceae).

Seasonality

Adults occur throughout the year, but they are most abundant during the wet season and early dry season (November–July), with an apparent peak in abundance in April. Hutchinson (1978) recalls observing large numbers of adults—in excess of 100—during May on the Daly River, NT. They are very scarce and often absent during the late dry season (August–October) and in some years they may be absent during the ‘build-up’ (November and December). The immature stages have been recorded sporadically from the early wet season to the early dry season (November–June). The larvae feed and develop rapidly on the new soft leaf growth and several generations are completed annually, but it is not clear how the species survives the late dry season (August–October) when the foliage of the native larval food plant is frequently absent or reduced in quality. Presumably, the species remains in pupal diapause during the late dry season.

Breeding status

This species is resident in the study region.

Conservation status

LC. Although the subspecies *P. phalantha araca* has a restricted range, there are no known threats facing the taxon.
Australian Painted Lady
Vanessa kershawi (McCoy, 1868)

Habitat
The breeding habitat of *V. kershawi* has not been recorded in the study region.

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded in November and May (Puccetti 1991; Daniels and Edwards 1998). The species is a well-known migrant (Smithers 1985).

Breeding status
Vanessa kershawi does not appear to have become permanently established in the study region. Presumably, it is a rare vagrant or migrant from south-eastern Australia.

Conservation status
NA.

Distribution
This species is known only from the western Gulf Country of the study region, where it has been recorded at Doomadgee (Puccetti 1991) and Boodjamulla/Lawn Hill National Park (Daniels and Edwards 1998), Qld. Outside the study region, *V. kershawi* occurs in the Cocos (Keeling) Islands, throughout southern Australia, Lord Howe and Norfolk islands and New Zealand.

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Yellow Admiral
Vanessa itea (Fabricius, 1775)

Distribution
This species is known only from the western Kimberley of the study region, where a single specimen was collected in the Buccaneer Archipelago at Koolan Island in Yampi Sound, WA, in December 1964 (McKenzie et al. 1995). Outside the study region, *V. itea* occurs mainly in southern Australia, Lord Howe and Norfolk islands and New Zealand.

Habitat
The breeding habitat of *V. itea* has not been recorded in the study region.

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Only a single adult has been recorded, in December (McKenzie et al. 1995). The species is known to migrate in south-eastern Australia (Smithers 1985), and in south-western Western Australia there is much evidence to suggest it is highly mobile and not permanently established (R. J. Powell, pers. comm.). For instance, on the islands off south-western Australia, *V. itea* is an immigrant in that it breeds temporarily during late autumn and winter when the native annual herbaceous larval food plants (*Parietaria* spp.) germinate and grow (Powell 1993; Williams and Powell 1998, 2006).

Breeding status
Vanessa itea does not appear to have become permanently established in the study region. Presumably, it is a rare vagrant or migrant from south-western Australia or the arid zone of central Australia.

Conservation status
NA.
Blue Argus
-Junonia orithya (Linnaeus, 1758)-

Distribution
This species is represented in the study region by the subspecies *J. orithya albicincta* Butler, 1875. It occurs widely throughout much of the region, from moist coastal areas to drier inland areas of the semi-arid zone (< 500 mm mean annual rainfall), where it has been recorded as far south as 24 km south-west of Halls Creek, WA; Powell Creek Outstation near Renner Springs, NT; and Thorntonia, north-east of Camooweal, Qld (Franklin 2007). It has also been recorded from McLaren Creek, NT, just outside the southern boundary of the study region. The geographic range falls within the spatial distribution of the larval food plants, although the food plants extend much further inland. Outside the study region, *J. orithya* occurs widely from Africa, India, southern China and South-East Asia, through mainland New Guinea and adjacent islands to north-eastern and eastern Australia.

Habitat
Junonia orithya breeds mainly in savannah woodland and open woodland where the larval food plants (*Buchnera* spp.) grow as annual herbs (Braby 2011a, 2015e), but it may also breed along the edges of monsoon forest where alternative food plants (*Thunbergia arnhemica, Pseudanthemum variabile*) grow.

Larval food plants
Pseudanthemum variabile, Thunbergia arnhemica (Acanthaceae), *Buchnera asperata, B. gracilis, B. linearis* (Orobanchaceae); also *Asystasia gangetica* (Acanthaceae).

Seasonality
Adults occur throughout the year, but, like *Junonia villida*, they are most abundant during the late wet season and early dry season (April and May). Their numbers steadily diminish as the dry season progresses. The immature stages have been recorded sporadically during the wet season and early dry season (November–May). It is not clear whether the species continues to breed during the dry season, but a female has been observed in late August ovipositing on the food plant growing in moist sand near permanent water at Kakadu National Park (Maguk Plunge Pool). Presumably, most females stop breeding and remain in reproductive diapause during the late dry season, similar to populations in northern Queensland (Jones 1987).

Breeding status
This species is resident in the study region.

Conservation status
LC.
Junonia orithya

Relative abundance (%)

Month

Junonia orithya (n = 625)

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | | |
Larva | | | | | | | | | | | | |
Pupa | | | | | | | | | | | | |
Adult | | | | | | | | | | | | |
Meadow Argus

Junonia villida (Fabricius, 1787)

Distribution

This species is represented in the study region by the subspecies *J. villida villida* (Fabricius, 1787). It occurs throughout the entire study region, extending well into the semi-arid zone, as well as into arid areas of central Australia south of the study region. Outside the study region, *J. villida* occurs in Christmas and Cocos (Keeling) islands, mainland New Guinea and adjacent islands, throughout Australia, Lord Howe and Norfolk islands, New Zealand and the islands of the South Pacific.

Habitat

Junonia villida occurs in a variety of habitats, but breeds mainly in savannah woodland and open woodland.

Larval food plants

Not recorded in the study region; probably *Hygrophila angustifolia* (Acanthaceae) and *Evolvulus alpinoides* (Convolvulaceae), as well as a wide variety of introduced herbaceous species, which are the food plants in eastern Australia (Braby 2000).

Seasonality

Adults occur throughout the year, but, like *Junonia orithya*, they are most abundant during the late wet season and early dry season (March–May). Their numbers steadily diminish as the dry season progresses, and they are scarce or even absent in some locations during the late dry season (August and September). Franklin (2011) observed similar trends near Darwin, NT, based on quantitative studies conducted over 14 months during 2008–09, although adults peaked slightly earlier in the wet season. Surprisingly, we have few data on the breeding phenology and seasonal history of the immature stages of this common and widespread species. Larvae have been recorded in January and May, but the identity of the plants was not determined due to the tendency of final instar larvae to wander from their food plants. Presumably, the species breeds during the wet season and early dry season and most females stop breeding and remain in reproductive diapause during the late dry season, similar to populations in northern Queensland (Jones 1987).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Junonia villida

- Specimen ±1970
- Observation ±1970
- Literature ±1970
- Specimen <1970
- Literature <1970
- Putative larval food plants

Junonia villida (n = 500)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Chocolate Argus
Junonia hedonia (Linnaeus, 1764)

Distribution
This species is represented in the study region by the subspecies *J. hedonia zelima* (Fabricius, 1775). It occurs in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 700 mm mean annual rainfall), where it has been recorded as far south as Adcock Gorge, WA (Franklin et al. 2005); and Wollogorang Station (Settlement Creek), NT (Franklin et al. 2005). Its geographic range corresponds well with the spatial distribution of its larval food plant, although the food plant extends further inland into lower rainfall areas. Its occurrence is more sporadic in the Kimberley and the food plant appears to be underreported in the northern Kimberley. Outside the study region, *J. hedonia* occurs from the Philippines and Indonesia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Bismarck Archipelago and the Solomon Islands.

Habitat
Junonia hedonia breeds mainly in paperbark swampland in floodplains and mixed paperbark-pandanus swamps adjacent to evergreen monsoon vine forest where the larval food plant grows as an annual herb, sometimes in shallow water (Braby 2011a). It also breeds in riparian paperbark woodland.

Larval food plant
Hygrophila angustifolia (Acanthaceae).

Seasonality
Adults occur throughout the year, but they are most abundant during the late wet season and first half of the dry season (April–July), with a peak in abundance in June. Their numbers steadily diminish as the dry season progresses, and they are scarce during the wet season. We have very few data on the breeding phenology and seasonal history of the immature stages. The immature stages (eggs and larvae) have been recorded towards the end of the wet season and early dry season (March and May), but undoubtedly they occur at other times of the year. The larval food plant germinates during the wet season and is available only during the late wet season and early dry season and then dies off in the mid to late dry season. Presumably, breeding is seasonal and most females stop breeding and remain in reproductive diapause during the late dry season and possibly early wet season. Although not previously known to migrate, migrations in the Top End have been observed on several occasions at the end of the wet season (Braby 2016b). During migration, adults fly rapidly 2–3 m above the ground from late morning to early afternoon in a northerly direction between mid April and early May. In 2012, a series of observations made over 13 days that involved large numbers of adults indicated that migration lasted for approximately two weeks.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Junonia hedonia

- **Relative abundance (%)**
- **Month**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Northern Argus
Junonia erigone (Cramer, [1775])

The subspecific identity has not been determined, but it may be J. erigone walkeri (Butler, 1901) from Timor, although Sands and New (2002) suggested that Australian material may represent an undescribed subspecies.

Habitat
The breeding habitat of J. erigone has not been recorded in the study region. Both adults were recorded in open areas adjacent to coastal semi-deciduous monsoon vine thicket.

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The two adults were recorded during the wet season (January and February).

Breeding status
Junonia erigone does not appear to have become permanently established in the study region. Presumably, it is a rare vagrant from the Lesser Sunda Islands.

Conservation status
NA.

Distribution
This species is known only from coastal areas of the Northern Territory of the study region. It is known only from the Wessel Islands (Rimbija Island), based on a female collected in January 1977 (Edwards 1977), and from Cobourg Peninsula (Black Point), NT, based on a male observed in February 2007 (Braby 2014a). Outside the study region, J. erigone occurs in Indonesia, Timor, mainland New Guinea, Fergusson Island and the Trobriand Islands.

Habitat
The breeding habitat of J. erigone has not been recorded in the study region. Both adults were recorded in open areas adjacent to coastal semi-deciduous monsoon vine thicket.

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The two adults were recorded during the wet season (January and February).

Breeding status
Junonia erigone does not appear to have become permanently established in the study region. Presumably, it is a rare vagrant from the Lesser Sunda Islands.

Conservation status
NA.
Lurcher

Yoma sabina (Cramer, [1780])

Distribution

This species is represented in the study region by the subspecies *Y. sabina parva* (Butler, 1876), although Lambkin and Kendall (2016) recently proposed that *Y. sabina parva* is a synonym of *Y. sabina sabina* (Cramer, [1780]). It was first recorded in the region by Common and Waterhouse (1981), who reported it from Groote Eylandt; however, the earliest record we are aware of is the series of specimens in the NTM collected in April 1976 from Nhulunbuy, NT, by A. J. Dartnall. *Yoma sabina* occurs in the Top End, where it is restricted to north-eastern Arnhem Land. It has been recorded from Elcho Island (Gäwa), Gove Peninsula and Groote Eylandt, NT. Its geographic range closely corresponds with the spatial distribution of its larval food plant, which is largely restricted to Gove Peninsula. Although the food plant also occurs further west at Kakadu National Park, *Y. sabina* is not established in this area. However, the food plant is absent from Elcho Island and Groote Eylandt, indicating that either alternative (as yet unreported) food plants are used at these locations or the known food plant is underreported. Outside the study region, *Y. sabina* occurs from South-East Asia, through mainland New Guinea and adjacent islands and north-eastern Australia to the Bismarck Archipelago and the Solomon Islands.

Excluded data

A historical record from Darwin, NT, by Waterhouse and Lyell (1914) is considered to be erroneous (Braby 2014a).

Habitat

Yoma sabina breeds in eucalypt woodland adjacent to mixed paperbark swampland–monsoon forest or the edges of evergreen monsoon vine forest where the larval food plant grows as a seasonal perennial herb in open areas (G. Martin, pers. comm.).

Larval food plant

Dipteracanthus bracteatus (Acanthaceae).

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded during most months of the year, but there are too few records (n = 23) to assess any seasonal changes in abundance. Breeding appears to be limited to the wet season, when the food plant is seasonally available (G. Martin). During the dry season, adults retract to moist refuges, such as evergreen monsoon vine forest or mixed paperbark tall swampland with rainforest elements in the understorey, where they remain settled in deep shade within the dry dead leaves of tall clumps of *Pandanus spiralis*. Presumably, females stop breeding and remain in reproductive diapause during the long dry season.

Breeding status

This species is resident in the study region.

Conservation status

LC. The species *Y. sabina* has a narrow range in the study region (geographic range = 14,900 sq km), within which it occurs in several conservation reserves, including the Dhimurru, Laynhapuy and Anindilyakwa IPAs. Despite its restricted occurrence, there are no major threats facing the taxon. However, the larval food plant is currently listed as NT under the *TPWCA* because of its limited AOO and impacts from mining activities.
Yoma sabina

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Larval food plant

Yoma sabina

- Species record
- Geographic range
- Phytoecological boundary
- IBRA bioregional boundary

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Blue-banded Eggfly
Hypolimnas alimena (Linnaeus, 1758)

Distribution
This species is represented by the subspecies *H. alimena darwinensis* Waterhouse & Lyell, 1914, which is endemic to the study region. It is restricted to the Top End, where it generally occurs in the higher rainfall areas (> 1,000 mm mean annual rainfall), although it has been recorded in drier areas at Wongalara Wildlife Sanctuary (Braby 2012a) and Ngukurr (Normand 2009), NT. Its geographic range corresponds well with the spatial distribution of its native larval food plant. The food plant, however, extends slightly further south-west to the Port Keats area. Outside the study region, *H. alimena* occurs from Maluku, including the Kai and Aru islands, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Bismarck Archipelago and the Solomon Islands.

Habitat
Hypolimnas alimena breeds in the ecotone between riparian evergreen monsoon vine forest and savannah woodland where the native and introduced larval food plants grow as herbs in the ground layer (G. Martin, pers. comm.). Males also congregate on hilltops in open woodland to locate females during the wet season, but they do not breed in these habitats.

Larval food plants
Pseuderanthemum variabile (Acanthaceae); also *Asystasia gangetica* (Acanthaceae); possibly *Brunoniella* spp. (Acanthaceae).

Seasonality
Adults occur throughout the year. They show little seasonal variation in abundance, although they appear to be more numerous during the 'build-up' (October and November) and again towards the end of the wet season (April). We have no records of the immature stages, but breeding is apparently limited to the wet season (November–April) (G. Martin, pers. comm.). During the dry season, adults retract to moist refuges, such as riparian evergreen monsoon vine forest or mixed paperbark forest with rainforest elements along perennial creeks or swamps, where they remain settled in deep shade. Presumably, females stop breeding and remain in reproductive diapause during the long dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Varied Eggfly

Hypolimnas bolina (Linnaeus, 1758)

Distribution
This species is represented in the study region by the subspecies *H. bolina nerina* (Fabricius, 1775). It occurs very widely throughout the region, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 400 mm mean annual rainfall), where it has been recorded as far south as Tennant Creek (Mary Ann Dam), NT (J. Archibald). It has also been recorded on Ashmore Reef in the Timor Sea, WA (D. C. Binns). The geographic range broadly corresponds with the spatial distribution of the putative native larval food plant (*Alternanthera denticulata*), as well as with the known food plants, all of which are introduced. Outside the study region, *H. bolina* occurs widely from Madagascar, India, Japan and South-East Asia, through mainland New Guinea and adjacent islands to the islands of the South Pacific. It also occurs throughout much of the Australian continent.

Habitat
Hypolimnas bolina breeds in open woodland and open disturbed areas, including suburban parks and gardens, where the introduced larval food plants grow as annual or seasonal perennial herbs, often in moist shaded areas beneath trees.

Larval food plants
Asystasia gangetica (Acanthaceae), *Synebrella nodiflora*, *Tridax procumbens* (Asteraceae), *Sida acuta* (Malvaceae); probably *Alternanthera denticulata* (Amaranthaceae), which is a food plant in Queensland (Braby 2000). The native food plants have not been recorded in the study region.

Seasonality
Adults occur throughout the year, but they are most abundant during the wet season (November–April), with a peak in abundance in March and April, and least abundant in the late dry season (August–October). During the dry season, adults retreat to moist refuges such as riparian forest or woodland along gullies and creeks, where they overwinter. The immature stages have been recorded sporadically only during the warmer months of high humidity (October–May). Presumably, females stop breeding and remain in reproductive diapause during the dry season (May–September), similar to populations in northern Queensland (Jones 1987; Kemp 2001).

Breeding status
This species is resident in the study region.

Conservation status
LC.
Hypolimnas bolina

Relative abundance (%)

Month

Hypolimnas bolina (n = 478)

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | | |
Larva | | | | | | | | | | | | |
Pupa | | | | | | | | | | | | |
Adult | | | | | | | | | | | | |
Danaid Eggfly

Hypolimnas misippus (Linnaeus, 1764)

Distribution

This species occurs in the Kimberley and Top End of the study region. It extends from moist coastal areas to drier inland areas, generally above 800 mm mean annual rainfall. It occurs sporadically from the Buccaneer Archipelago at Koolan Island in Yampi Sound, WA (Koch and van Ingen 1969; McKenzie et al. 1995), to the Roper River area, NT, near the Gulf of Carpentaria. The larval food plant is considerably more widespread, extending to the semi-arid zone as well as across the Top End. Further field surveys are thus required to determine whether *H. misippus* occurs in the eastern half of the Top End, particularly north-eastern Arnhem Land. Outside the study region, *H. misippus* occurs widely from Africa, Madagascar, India and South-East Asia, through mainland New Guinea and eastern Australia to the Solomon Islands and Norfolk Island, as well as in coastal regions of north-western South America (K. Willmott, pers. comm.).

Habitat

Hypolimnas misippus breeds in open disturbed areas where the larval food plant grows as an annual herb. Males also congregate on prominent hilltops to locate females during the wet season, but they do not breed in these habitats.

Larval food plant

Portulaca oleracea (Portulacaceae).

Seasonality

Adults occur throughout the year, but they are observed more frequently during the latter half of the wet season (February–April), although they are never encountered in large numbers or high densities. Very few adults have been recorded during the dry season (June–October). The breeding phenology is not well understood. The immature stages (larvae or pupae) have been recorded during the late wet season (March and April), when adults are most abundant, and freshly emerged adults have also been collected around this time (March–May). However, it is not clear how the species survives the dry season when foliage of the larval food plant is absent. Presumably, the species breeds seasonally during the wet season and females then stop breeding and remain in reproductive diapause during the dry season.

Breeding status

This species is assumed to be resident in the study region.

Conservation status

LC.
Hypolimnas misippus (n = 50)

- **Relative abundance (%)**
- **Month**:
 - J
 - F
 - M
 - A
 - M
 - J
 - J
 - A
 - S
 - O
 - N
 - D

- **Egg**
- **Larva**
- **Pupa**
- **Adult**
Crow Eggfly
Hypolimnas anomala (Wallace, 1869)

Distribution

This species is represented in the study region by the subspecies _H. anomala albula_ (Wallace, 1869). It is known from only two specimens, both males, from Darwin, NT: one collected in March 1909 by F. P. Dodd (Waterhouse and Lyell 1914; Gibb 1977; Common 1978) and the other in February 1987 by C. G. Miller (Braby 2000). Outside the study region, _H. anomala_ occurs in South-East Asia and north-eastern Australia, where it is probably not established.

Habitat

The breeding habitat of _H. anomala_ has not been recorded in the study region. One of the specimens was collected in semi-deciduous monsoon vine thicket at East Point Reserve, NT (Meyer et al. 2006).

Larval food plants

Not recorded in the study region.

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. The two adults were recorded during the wet season (February and March).

Breeding status

Hypolimnas anomala does not appear to have become permanently established in the study region. Presumably, it is a rare vagrant from the Lesser Sunda Islands.

Conservation status

NA.
Tailed Emperor
Charaxes sempronius (Fabricius, 1793)

Habitat
Charaxes sempronius breeds in a wide variety of habitats, including monsoon forest and eucalypt woodland where the larval food plants grow as trees. It also occurs in suburban parks and gardens. Males readily congregate on hilltops to locate females, but the species does not breed in these habitats.

Larval food plants
Celtis australiensis (Cannabaceae), Acacia hemleyi, Peltophorum pterocarpum (Fabaceae), Vitex acuminata (Lamiaceae); also *Mimosa pigra (Fabaceae). This highly polyphagous species (see Braby 2000) undoubtedly uses a much wider range of plants than current records from the study region indicate.

Seasonality
Adults occur throughout the year, but they are observed more frequently during the late dry season, with a pronounced peak in abundance in September, although they are never encountered in large numbers or high densities. The breeding phenology is not well understood. The immature stages have been recorded sporadically during the dry season (April–October). Presumably, the species also breeds in the wet season and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species is represented in the study region by the subspecies C. sempronius sempronius (Fabricius, 1793). It occurs widely in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 400 mm mean annual rainfall). It has been recorded as far south as 16 km east–northeast of Anna Plains Station and Broome, WA (Warham 1957); 7 km north–north-east of Helen Springs Homestead near Renner Springs, NT; and Boodjamulla/Lawn Hill National Park (Constance Range), Qld (Dunn 2015a). The geographic range corresponds well with the spatial distribution of the known larval food plants. Outside the study region, C. sempronius occurs throughout north-eastern, eastern and south-eastern Australia, and Lord Howe Island.
Charaxes sempronius

Relative abundance (%)

Month

Charaxes sempronius (n = 166)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Evening Brown

Melanitis leda (Linnaeus, 1758)

Habitat

Melanitis leda occurs in a variety of habitats, but it usually breeds in riparian areas along the banks of rivers, creeks and swamps that support evergreen monsoon vine forest, mixed eucalypt open forest and paperbark swampland or open forest with rainforest elements where the larval food plants grow as perennial or annual grasses (Braby 2011a, 2015e); it usually favours the ecotone or edges of these habitats.

Larval food plants

Imperata cylindrica, *Ischaemum australe* (Poaceae); also *Cenchrus pedicellatus*, *Cynodon radius*, *Megathyrsus maximus*, *Oryza sativa*, *Sorghum vulgare* (Poaceae).

Seasonality

Adults occur throughout the year, but they are most abundant after the monsoon rains and during the cooler part of the dry season (April–July). Breeding is strictly seasonal, with the immature stages occurring only during the wet season and early dry season (November–May), when their larval food plants, which consist of a suite of native and introduced grasses, are available and several generations are completed. Presumably, females stop breeding and remain in reproductive diapause and aggregate in moist refuges during the mid to late dry season (July–October), similar to populations in northern Queensland (Jones 1987).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Melanitis leda

- **Specimen ≥1970**
- **Observation ≥1970**
- **Literature ≥1970**
- **Specimen <1970**
- **Literature <1970**
- **Larval food plants**

Melanitis leda

- **Species record**
- **Geographic range**
- **Phytogeographical boundary**
- **IBRA bioregional boundary**

Melanitis leda (n = 295)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>1</td>
</tr>
</tbody>
</table>

Relative abundance (%)

- J: 5%
- F: 5%
- M: 5%
- A: 15%
- J: 15%
- J: 15%
- A: 10%
- S: 5%
- O: 5%
- N: 5%
- D: 5%

Month

- J: January
- F: February
- M: March
- A: April
- M: May
- J: June
- J: July
- A: August
- S: September
- O: October
- N: November
- D: December
Dingy Bush-brown
Mycalesis perseus (Fabricius, 1775)

Habitat

M. perseus occurs in a variety of woodland habitats where the putative larval food plants grow as seasonal perennial grasses.

Larval food plants

Not recorded in the study region; probably *Dichanthium sericeum*, *Heteropogon* spp., *Themeda triandra* (Poaceae), as well as other native and introduced grasses, which are the food plants in north-eastern Queensland (Braby 2000).

Seasonality

Adults occur throughout the year, but they are most abundant after the monsoon rains and during the cooler part of the dry season (April–August), with a pronounced peak in abundance in June. We have very limited information on the breeding phenology and incidence of the immature stages of this common species. Presumably, the seasonal history is similar to populations in northern Queensland in which breeding is strictly seasonal and limited to the wet season and early dry season, when their putative larval food plants are available and several generations are completed, and females stop breeding, remain in reproductive diapause and aggregate in moist refuges during the mid to late dry season (May/June–November/December), depending on the timing of rainfall (Braby 1995a, 1995b).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Mycalesis perseus

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Cedar Bush-brown
Mydosama sirius (Fabricius, 1775)

Habitat

Mydosama sirius occurs mainly in paperbark swampland where the putative larval food plant (*Ischaemum australe*) grows as a perennial grass, but it may also breed along the edges of riparian evergreen monsoon vine forest, where alternative grasses are used (Braby 2015c). It also occurs in the edges of floodplain wetlands, where it undoubtedly breeds.

Larval food plants

Imperata cylindrica (Poaceae); probably *Ischaemum australe* (Poaceae), which is a food plant in north-eastern Queensland (Braby 2000).

Seasonality

Adults occur throughout the year, but they are most abundant after the monsoon rains and during the cooler part of the dry season (April–September). We have very limited information on the breeding phenology and incidence of the immature stages. Presumably, the seasonal history is similar to populations in northern Queensland in which breeding occurs throughout the year, but reproductive activity declines as the dry season progresses, and adults are least abundant during the wet season (Braby 1995a, 1995b).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Mydosa, siri, us

Mydosa, siri, us

Mydosa, siri, us (n = 225)

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | | |
Larva | | | | | | | | | | | | |
Pupa | | | | | | | | | | | | |
Adult | | | | | | | | | | | | |
Orange Ringlet
Hypocysta adiante (Hübner, 1831)

Habitat
Hypocysta adiante breeds in a wide range of habitats, including savannah woodland, riparian woodland along seasonal and perennial creeks or riverbanks and the edges of wet and dry monsoon forests, where the larval food plants grow as perennial grasses (Braby 2011a, 2015e). It also breeds in suburban parks and gardens, where it uses a range of introduced grasses.

Larval food plants
Aristida macroclada, Arundinella nepalensis, Digitaria gibbosa, Ischaemum australe, I. tropicum (Poaceae); also *Axonopus compressus, Chloris sp., Cynodon dactylon, Sporobolus sp., Urochloa mosambicensis* (Poaceae).

Seasonality
Adults occur throughout the year. They appear to show little seasonal variation in abundance, although they tend to be more numerous after the monsoon rains and during the cooler part of the dry season (March–August). The immature stages have been recorded during a similar period (February–August). Presumably, the seasonal history is similar to populations in northern Queensland in which breeding occurs throughout the year, but reproductive activity may decline as the dry season progresses (Braby 1995a).

Breeding status
This species is resident in the study region.

Conservation status
LC.
Dusky Knight
Ypthima arctous (Fabricius, 1775)

Distribution
This species is represented in the study region by the subspecies _Y. arctous arctous_ (Fabricius, 1775). It occurs widely in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 700 mm mean annual rainfall). It has been recorded as far south as Mornington Wildlife Sanctuary (Annie Creek), WA; Bessie Spring, NT (Dunn and Dunn 1991); and Lagoon Creek crossing 17 km north-west of Hells Gate Roadhouse, Qld. The putative native larval food plants (*Imperata cylindrica* and *Themeda triandra*) occur widely in northern Australia, including both coastal and semi-arid areas, and their overall spatial distribution includes the geographical range of _Y. arctous_. Outside the study region, _Y. arctous_ occurs in mainland New Guinea and adjacent islands and north-eastern and eastern Australia.

Habitat
The natural breeding habitat of _Y. arctous_ has not been recorded in the study region. Adults occur in a wide variety of habitats, but they are usually associated with woodland, mixed swampland and the edges of monsoon forest or, in the drier inland areas, riparian woodland along creeks and gullies, in which they _no doubt_ breed.

Larval food plants
Axonopus compressus (Poaceae); probably *Imperata cylindrica* and *Themeda triandra* (Poaceae), which are two larval food plants in Queensland (Braby 2000). The native food plants have not been recorded in the study region, but the larvae probably feed on a range of grasses.

Seasonality
Adults occur throughout the year, but they are most abundant after the monsoon rains and during the cooler part of the dry season (April–August). They appear to become scarce towards the end of the dry season during the ‘build-up’ (September–November). We have very limited information on the breeding phenology and incidence of the immature stages. Presumably, the seasonal history is similar to populations in northern Queensland in which breeding occurs throughout the year (Braby 1995a).

Breeding status
This species is resident in the study region.

Conservation status
LC.
Blues
(Lycaenidae)
Moth Butterfly
Liphyra brassolis Westwood, [1864]

Distribution
This species is represented in the study region by the subspecies *L. brassolis major* Rothschild, 1898. It has a disjunct distribution, occurring mainly in the higher rainfall areas (> 1,000 mm mean annual rainfall) of the Kimberley and the Top End. It has been recorded as far inland as the King Leopold Ranges at Mount Elizabeth Station 6 km north-northeast of Joint Hill, WA (G. Swann), and Nitmiluk National Park (Katherine Gorge), and further east at Groote Eylandt (Yedikba) (Tindale 1923), NT. It has also been recorded at Walker Creek 36 km east of Karumba, Qld, just outside the eastern boundary of the study region (Braby 2015d). The geographic range closely corresponds with the spatial distribution of its associated ant. The ant, however, also occurs in the eastern Kimberley; thus, further field surveys are required to determine whether *L. brassolis* occurs in the intervening areas of its known range in the Joseph Bonaparte Gulf region, particularly the area between the Ord and Victoria rivers. Outside the study region, *L. brassolis* occurs widely from Sikkim in northern India and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern Australia to the Solomon Islands.

Attendant ant/larval food
Oecophylla smaragdina (Formicidae: Formicinae). The larvae are predacious on the immature stages of the Green Tree Ant (*O. smaragdina*) (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults occur throughout the year. They appear to show little seasonal variation in abundance, although they have been recorded more frequently in June and November, but this may be an artefact of small sample size. We have very few data on the occurrence of the immature stages and the breeding phenology is not well understood. Presumably, the species breeds continuously throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Liphyra brassolis

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Attendant ant/larval food

Liphyra brassolis

- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Liphyra brassolis (n = 31)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%)
Small Ant-blue
Acrodipsas myrmecophila (Waterhouse & Lyell, 1913)

Distribution
This species is known from the Top End of the study region, where it has been recorded only at Mt Burrell on Tipperary Station, NT (Dunn and Dunn 1991; Braby 2000). Its presence in the region was detected only as recently as 1981. The putative attendant ants (_Papyrius_ spp.) are very widespread in the region, occurring in the Kimberley, Top End and western Gulf Country, from moist coastal areas to drier inland areas of the semi-arid zone (> 500 mm mean annual rainfall). Further field surveys are thus required to determine whether _A. myrmecophila_ is equally widespread. Outside the study region, _A. myrmecophila_ occurs sporadically from northern Queensland, through NSW and ACT to Victoria.

Habitat
The breeding habitat of _A. myrmecophila_ has not been recorded in the study region. Adults have been collected in the canopy of trees in low open woodland on a hilltop. Presumably, the species breeds in savannah woodland where colonies of the putative associated ant are established.

Attendant ant/larval food
Not recorded in the study region; probably _Papyrius_ spp. (Formicidae: Dolichoderinae). In eastern Australia, the larvae are predacious on the immature stages of _Papyrius_ ants (Eastwood and Fraser 1999; Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been collected only during the dry season (July and October) (Dunn and Dunn 1991; Braby 2000), but there are too few records (n = 2) to assess any seasonal changes in abundance.

Breeding status
This species is resident in the study region.

Conservation status
DD. The species _A. myrmecophila_ has an extremely limited range in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 700 sq km). It is currently known from only one site, which lies entirely within a pastoral property that lacks adequate conservation management due to threats from the invasion and spread of grassy weeds (particularly gamba grass, _Andropogon gayanus_), inappropriate fire regimes, particularly an increase in fire frequency, and extensive clearing for cattle grazing of savannah woodland surrounding the hilltop (i.e., potential breeding habitat). Moreover, the species appears to be rare in that very few specimens have been collected, especially during the past two decades. However, the geographic range is incomplete due to the difficulties of detecting and sampling the taxon; breeding colonies are very localised and adults are small, highly seasonal and frequently fly in the canopy at the summit of steep hills. The spatial distribution of the putative attendant ant—based on records in the TERC and the occurrence of the Fiery Jewel (_Hypochrysops ignitus_), which is associated with the same ant—suggest _A. myrmecophila_ may be very widespread. Thus, the taxon may qualify as LC rather than Near Threatened (NT) once adequate data are available. Sands and New (2002) also concluded that DD was the most appropriate Red List category for this species in the Northern Territory, in contrast with its threatened status elsewhere in Australia. Nevertheless, targeted field surveys (e.g., on hilltops) to clarify the extent of its distribution should be a priority for this species.
Northern Ant-blue
Acrodipsas decima Miller & Lane, 2004

Distribution
This species is endemic to the study region. It has been recorded only at Mt Burrell on Tipperary Station, NT. Its presence in the Top End was detected only as recently as 1991 (Miller and Lane 2004). Further field surveys are required to determine whether *A. decima* occurs elsewhere in the Top End.

Habitat
The breeding habitat of *A. decima* has not been recorded in the study region. Adults have been collected in the canopy of trees in low open woodland at the summit of a hill (Miller and Lane 2004). Presumably, the species breeds in savannah woodland and plains surrounding steep hills and mesas.

Attendant ant/larval food
Not recorded.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded sporadically during the wet season and early dry season (November–May), with most specimens collected in April and May (Miller and Lane 2004), but there are too few records (*n* = 14) to assess any seasonal changes in abundance.

Breeding status
This species is resident in the study region.

Conservation status
DD. The species *A. decima* appears to be a short-range endemic (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 700 sq km). It is currently known from only one site, which lies entirely within a pastoral property that lacks adequate conservation management due to threats from the invasion and spread of grassy weeds (particularly gamba grass, *Andropogon gayanus*), inappropriate fire regimes, particularly an increase in fire frequency, and extensive clearing for cattle grazing of savannah woodland surrounding the hilltop (i.e. potential breeding habitat). Moreover, it is rarely encountered and few specimens have been collected during the past decade. Thus, the taxon may qualify as Near Threatened (NT) once adequate data confirm its restricted AOO and limited number of locations. Currently, the geographic range is incomplete due to the difficulties of detecting and sampling the taxon: adults are small, seasonal and appear to fly in the canopy at the summit of steep hills. Targeted field surveys (e.g. on hilltops) to clarify the extent of its distribution and determine its critical habitat should be a high priority for this species.
Acrodipsas decima

- Specimen ≤1970
- Literature ≤1970

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Photo: Mt Burrell, NT, M.F. Braby
Copper Jewel
Hypochrysops apelles (Fabricius, 1775)

Distribution
This species is represented by an undescribed subspecies, which is endemic to the study region. It occurs in the north of the Northern Territory, where it is restricted to coastal areas of the Top End, its presence in the region first reported by Common and Waterhouse (1981) based on a male specimen collected from Casuarina Beach near Darwin in 1973 by E. D. Edwards. More recently, it has been recorded further east near Maningrida, NT (Bisa 2013). The larval food plants occur very widely in coastal areas of the study region, suggesting the known geographic range of *H. apelles* may be incomplete and undersampled, possibly due to the difficulties of accessing the butterfly’s habitat. Further field surveys are thus required to determine whether *H. apelles* occurs elsewhere, particularly in coastal areas of the Kimberley, north-eastern Arnhem Land and the western Gulf Country. Outside the study region, *H. apelles* occurs in the Aru Islands, mainland New Guinea and adjacent islands and north-eastern and eastern Australia.

Habitat
Hypochrysops apelles breeds mainly in the landward edge of mangroves where its main larval food plant (*Lumnitzera racemosa*) grows as a small tree in relatively high densities and colonies of the attendant ant are established. Breeding colonies are very localised within these habitats.

Larval food plants
Lumnitzera racemosa (Combretaceae). *Ceriops australis* (Rhizophoraceae). The main food plant is *L. racemosa* (Meyer 1996a; Eastwood et al. 2008), but occasionally *C. australis* is used during the early dry season when adult population numbers are higher (Braby 2011a).

Attendant ant
Crematogaster sp. (Formicidae: Myrmicinae). The larvae and pupae are constantly attended by numerous small black ants in an obligatory myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults have been recorded during most months of the year, but there are too few records (n = 19) to assess any seasonal changes in abundance. In general, adults and the immature stages (larvae) appear to be more numerous during the late wet season and early dry season (April and May) and are scarce in the late dry season. The immature stages have been recorded sporadically during the dry season (April–September). Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
Near Threatened (NT). Available data suggest the putative subspecies *H. apelles* ssp. ‘Top End’ is a short-range endemic (EOO = 4,320 sq km) and occurs in at least two conservation reserves: Casuarina Coastal Reserve and Djelk IPA. However, it may qualify for a threatened category in the near future because much of the intervening mangrove habitat between these two locations is not protected from coastal development impacts and therefore the butterfly populations may be at risk (Sands and New 2002), particularly in the Darwin area, where it is known only from a limited number of sites (Casuarina Coastal Reserve, Buffalo Creek, Channel Island and Palmerston). The population of *Hypochrysops apelles* ssp. ‘Top End’ is likely to be reduced in future based on a projected decline in the AOO and/or number of locations (criterion D2). Further field surveys to clarify its distribution and monitor its occupancy are required for this species.
Fiery Jewel

Hypochrysops ignitus (Leach, 1814)

This species is represented by the subspecies *H. ignitus erythrina* (Waterhouse & Lyell, 1909), which is endemic to the study region. It has a wide but sporadic distribution, extending from the high rainfall areas of the Tiwi Islands (> 1,800 mm mean annual rainfall) to drier inland areas of the semi-arid zone (< 500 mm). It occurs mainly in the northern and eastern Kimberley and in the Top End, where it has been recorded as far inland as 98 km south-west of Katherine, NT (Braby 2000). However, it has also been recorded from remote areas further south, including Broome (Williams et al. 1992; Johnson and Valentine 2004) and the Edgar Ranges (Common 1981), WA, in the southern Kimberley; and from Doonmadgee (Puccetti 1991) and Bentinck Island in the South Wellesley Islands, Qld (Daniels 2005), in the western Gulf Country. These populations have not been placed to subspecies, but are likely to be *H. ignitus erythrina*, based on geographic grounds (the type locality is Darwin) (Waterhouse and Lyell 1909; Sands 1986). The geographical range of *H. ignitus* broadly corresponds with the spatial distribution of its associated ant. Although the larval food plants are more widely distributed, the ant occurs mainly in areas with more than 500 mm mean annual rainfall. Further field surveys are required in the Kimberley, Northern Deserts and the Limmen Bight area in the Gulf of Carpentaria to determine whether *H. ignitus* occurs in the intervening areas between its known geographic range. Outside the study region, *H. ignitus* occurs in southern New Guinea and throughout the coastal and near-coastal areas of north-eastern, eastern, south-eastern and south-western Australia.

Habitat

Hypochrysops ignitus breeds mainly in savannah woodland on a variety of substrates, but often loamy sand or sand, but also in the ecotone between savannah woodland and monsoon forest where the larval food plants grow as shrubs or saplings regenerating after fire and where colonies of the attendant ant are established. Breeding colonies of the butterfly are very localised within these habitats.

Larval food plants

Maranthes corymbosa (Chrysobalanaceae), *Glochidion apodogynum* (Phyllanthaceae), *Acacia leptocarpa*, *A. tumida* (Fabaceae), *Clerodendrum floribundum* (Lamiaceae), *Planchnia careya* (Lecythidaceae), *Brachychiton paradoxus* (Malvaceae), *Alphitonia excelsa* (Rhamnaceae), *Gardenia megasperma* (Rubiaceae), *Smilax australis* (Smilacaceae). The larvae feed on a wide range of plants, but they are frequently found on *Planchnia careya*. The record of *Brachychiton paradoxus* by Meyer (1996a) may well be *B. megaphyllus*, because these two species have been confused in the past (Franklin and Bate 2013).

Attendant ants

Papyrius spp. (*nitidus* species group) (Formicidae: Dolichoderinae). The larvae and pupae are constantly attended by numerous Coconut Ants (*Papyrius* spp.) in an obligate myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality

Adults occur during most months of the year. They appear to show little seasonal variation in abundance, although they tend to be more numerous during the wet season (December–March). The immature stages have been recorded during all months except October, indicating that the species breeds throughout the year, during which several generations are completed.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Purple Oak-blue
Arhopala eupolis (Miskin, 1890)

Habitat
Arhopala eupolis occurs in a variety of habitats, but breeds mainly in savannah woodland where the larval food plants grow as understorey trees or as saplings regenerating after fire and where arboreal nests of the attendant ant are established (Braby 2011a, 2015c). It also breeds in mixed woodland–monsoon forest associations and along the edges of riparian evergreen monsoon vine forest, particularly in drier inland areas.

Larval food plants
Buchanania obovata (Anacardiaceae), Maranthes corymbosa (Chrysobalanaceae), Terminalia carpentariae, T. ferdinandiana (Combretaceae), Corymbia bella, Corymbia disjuncta, Eucalyptus miniata (Myrtaceae), Cupaniopsis anacardioides (Sapindaceae); also *Syzygium aqueum (Myrtaceae).

Attendant ant
Oecophylla smaragdina (Formicidae: Formicinae). The larvae and pupae are constantly attended by numerous Green Tree Ants (O. smaragdina) in an obligatory myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults occur throughout the year, but they are generally more abundant during the wet season (November–April). The immature stages have also been recorded over a similar period, as well as in the dry season (August). The larvae feed on the new soft leaf growth and the life cycle is completed relatively quickly, with no evidence of diapause in any of the life history stages. Presumably, the species breeds continuously throughout the year and several generations are completed annually by switching its food plants on a seasonal basis according to the availability of new foliage.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Arhopala eupolis

- Relative abundance (%)
- Month
- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen ≤1970
- Literature ≤1970
- Larval food plants
- Attendant ant

Arhopala eupolis

- Species record
- Geographic range
- Phyogeographical boundary
- IBD/A biogeographical boundary

Arhopala eupolis (n = 331)

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Shining Oak-blue

Arhopala micale Blanchard, [1848]

Distribution

This species is represented by an undescribed subspecies, which is endemic to the study region. It is restricted to the Top End, where it occurs mainly in the higher rainfall areas (> 800 mm mean annual rainfall). It has been recorded as far south as Bradshaw Field Training Area (Angalarri River catchment) (Archibald and Braby 2017), Beward Lagoon 20 km west of Hodgson Downs, and Limmen River Fishing Camp (S. Normand), NT. The geographical range of *A. micale* closely corresponds with the spatial distribution of its associated ant within the Top End. Although the larval food plants and attendant ant also occur widely in the Kimberley, searches have not detected *A. micale* in this area. Similarly, although the larval food plants are more widely distributed in the Northern Deserts and western Gulf Country, the ant is absent from these areas and is much more restricted in extent (Lokkers 1986). Outside the study region, *A. micale* occurs from Maluku, including the Kai and Aru islands, through mainland New Guinea and adjacent islands and north-eastern Australia to the Louisiade Archipelago.

Habitat

Arhopala micale breeds mainly in coastal monsoon vine thicket and evergreen monsoon vine forest associated with seepages or permanent freshwater streams where the larval food plants grow as understorey trees and where arboreal nests of the attendant ant are established.

Larval food plants

Calophyllum inophyllum (Clusiaceae), *Brachychiton diversifolius*, *Sterculia quadrifida* (Malvaceae), *Cupaniopsis anacardoides* (Sapindaceae).

Attendant ant

Oecophylla smaragdina (Formicidae: Formicinae). The larvae and pupae are constantly attended by numerous Green Tree Ants (*O. smaragdina*) in an obligatory myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality

Adults occur throughout the year, but they are generally more abundant during the dry season (April–July). The immature stages have been recorded more sporadically during the year. The larvae feed on the new soft leaf growth and the life cycle is completed relatively quickly, with no evidence of diapause in any of the life history stages. Presumably, the species breeds continuously throughout the year and several generations are completed annually by switching its food plants on a seasonal basis according to the availability of new foliage.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Arhopala micale

- Specimens ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimens <1976
- Literature <1970
- Larval food plants
- Attendant ants

Arhopala micale (n = 99)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Silky Azure
Ogyris oroetes (Hewitson, 1862)

Distribution
This species is represented in the study region by the subspecies *O. oroetes oroetes* (Hewitson, 1862). It has a wide but sporadic distribution in the Kimberley, Top End and western Gulf Country, where it occurs mainly in the lower rainfall areas (700–1,400 mm mean annual rainfall). It has been recorded mainly from inland areas in the eastern Kimberley and the western half of the Top End, but it has also been recorded as far west as Derby, WA (Waterhouse and Lyell 1914), and as far east as Borroloola, NT. The larval food plant is considerably more widespread than the known geographic range of *O. oroetes*, particularly in the Kimberley, Northern Deserts and western Gulf Country. Further field surveys are therefore required to determine whether *O. oroetes* occurs in the intervening areas between its known ranges. Outside the study region, *O. oroetes* occurs widely in eastern, central and southern Australia.

Habitat
Ogyris oroetes breeds in savannah woodland where the larval food plant grows as a mistletoe (parasitic shrub) on eucalypts, particularly *Corymbia* spp. (Braby 2011a). Males also briefly visit hilltops to locate females, but they do not breed in these habitats.

Larval food plant
Amyema bifurcata (Loranthaceae).

Attendant ant
Not recorded in the study region. In the arid zone of the Northern Territory outside the study region, larvae and pupae are occasionally attended by *Crematogaster* sp. (*longiceps* group) ants (Eastwood et al. 2008; Braby 2011a). Elsewhere, they are attended by a few ants from several genera in a facultative myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded during most months of the year, but we have too few records (*n = 15*) to assess any seasonal changes in abundance. Preliminary observations suggest that adults, like *Ogyris amaryllis*, are more numerous in the second half of the year during the mid to late dry season and ‘build-up’ (July–December), but are scarce during the wet season and early dry season (January–June). We have few data on the incidence of the immature stages, with pupae recorded sporadically from February to July. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC. Despite its wide, sporadic range, *O. oroetes* appears to be poorly represented in conservation reserves, and is currently known only from Keep River National Park.
Bright Purple Azure
Ogyris barnardi (Miskin, 1890)

Distribution
This species is represented in the study region by the subspecies *O. barnardi barnardi* (Miskin, 1890). It is restricted to western Queensland in the Gulf Country, where it occurs in the semi-arid zone (400 mm mean annual rainfall), its presence in the region detected only as recently as 2011 (Dunn 2013). The larval food plant occurs slightly further west in the Northern Territory; however, targeted searches at several sites supporting suitable habitat (in September 2015) failed to detect *O. barnardi*. Outside the study region, *O. barnardi* occurs in the inland areas of Queensland, northern NSW and central southern South Australia.

Habitat
Ogyris barnardi breeds in *Acacia* low open woodland where the larval food plant grows as a mistletoe (parasitic shrub) on *Acacia georginae*.

Larval food plant
Amyema quandang (Loranthaceae).

Attendant ant
Not recorded in the study region. In Queensland, the larvae and pupae are attended by *Crematogaster* sp. ants in a facultative myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded only during the warmer ‘spring’ months of the late dry season (September–November), but we have too few records (n = 9) to assess any seasonal changes in abundance.

Breeding status
This species is resident in the study region.

Conservation status
DD. The subspecies *O. barnardi barnardi* has a short range in the study region (EOO = 9,090 sq km). All known sites occur on roadsides and pastoral lands with inadequate protection or management, and are potentially threatened from habitat loss as a result of land clearing for cattle production and/or degradation from roadworks. That is, the population may be reduced in future based on a projected decline in the AOO and/or quality of its habitat. Thus, the taxon may qualify as NT once adequate data are available. Monitoring the extent and/or quality of the critical habitat and identification of the nature and extent of key threatening processes are required for this species.
Satin Azure

Ogyris amaryllis (Hewitson, 1862)

Distribution

This species is represented in the study region by the variable subspecies *O. amaryllis meridionalis* (Bethune-Baker, 1905). It has a very wide distribution, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 400 mm mean annual rainfall), as well as the arid zone of central Australia beyond the southern boundary of the study region. Its geographic range broadly corresponds with the spatial distribution of its larval food plants. The food plants, however, are wider in extent, occurring also in the northern Kimberley, on the Tiwi Islands and Cobourg Peninsula, NT; thus, further field surveys are required to determine whether *O. amaryllis* occurs in these areas. Outside the study region, *O. amaryllis* occurs throughout most of the Australian continent.

Habitat

Ogyris amaryllis breeds in a variety of habitats, including coastal mangroves, savannah woodland, riparian woodland, eucalypt woodland with a hummock grass understorey and *Acacia* low open woodland where the larval food plants grow as mistletoes (parasitic shrubs) on various trees.

Larval food plants

Amyema benthamii, A. quandang, A. sanguinea, A. thalassia, Diplatia grandibractea (Loranthaceae).

Attendant ant

Crematogaster sp. (Formicidae: Myrmicinae). The larvae and pupae are occasionally attended by a few ants in a facultative myrmecophilous association (Meyer 1996a; Paton 2013; Braby 2015e).

Seasonality

Adults occur throughout the year, but, like *Ogyris oroetes*, they are more abundant during the second half of the year, particularly during the late dry season (August and September). The immature stages have also been recorded frequently during August and September. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Ogyris amaryllis

Relative abundance (%)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Month:
- J: January
- F: February
- M: March
- A: April
- J: May
- J: June
- A: July
- S: August
- O: September
- N: October
- D: November

Egg, Larva, Pupa, Adult

Geographic range

Phyogeographical boundary

IRRA biogeographical boundary

Specimen 1970
Observation 1970
Literature 1970
Specimen 1970
Literature 1970
Larval food plants
Orange-tipped Azure, Dodd’s Azure
Ogyris iphis (Waterhouse & Lyell, 1914)

Distribution
This species is represented by the subspecies *O. iphis doddi* (Waterhouse & Lyell, 1914), which is endemic to the study region. It occurs in the north of the Northern Territory, where it is restricted to the higher rainfall areas (> 1,400 mm mean annual rainfall) of the north-western corner of the Top End. It has been recorded from only three locations: Darwin (Parap), Melville Island (Pularumpi) and Cobourg Peninsula (near Danger Point), NT (Braby 2000, 2015a; Woinarski et al. 2007b). The species was originally discovered at Darwin (Parap) in 1908–09 by F. P. and W. D. Dodd (Waterhouse and Lyell 1914; Dodd 1935a; Braby 2015a), who collected and reared a series of at least 14 specimens (five males, nine females in AM, ANIC, NMV, SAM, BMNH). Although the known larval food plant is very widely distributed throughout the study region, the extent of the attendant ant is much more restricted (based on records in the TERC and ANIC). However, the known geographic range of *O. iphis* is considerably smaller than the spatial distribution of its associated ant. The ant has also been recorded in the north-western Kimberley (Admiralty Gulf and Kalumburu), WA; Litchfield (Tolmer Falls and Lost City), Kakadu (Jim Jim Falls area) and Limmen (Butterfly Springs) national parks and from several sites on Gove Peninsula, NT. Further field surveys are thus required to determine whether *O. iphis* is present in the near-coastal areas of the north-western Kimberley and northern and north-eastern Arnhem Land (from Mungenella to Nhulunbuy and Birany Birany and Wandawuy homelands). In recent years, targeted searches for *O. iphis* in the Darwin area (Meyer et al. 2006) and in the more inland areas at Robin Falls and Litchfield and Kakadu national parks have not detected the butterfly, which suggests *O. iphis* is absent from these areas. Outside the study region, *O. iphis* occurs in north-eastern Queensland.

Excluded data
Sands and New (2002) tentatively listed the species from the Mitchell Plateau, WA, and Mt Burrell, NT, based on possible sightings of adults, but given the difficulty of identifying adults in the field (the butterfly flies high and fast in the canopy) and potential confusion with other similar species, especially *Ogyris aroetes*, which regularly hilltops at Mt Burrell, these records need to be confirmed before they can be accepted.

Habitat
Ogyris iphis has been recorded breeding in near-coastal savannah woodland on a gently sloping laterite outcrop/breakaway on the edge of a plateau where a mature clump of the larval food plant grew as a mistletoe (parasitic shrub) on *Eucalyptus tetrodonta* and where extensive colonies of the attendant ant were established (Braby 2015a, 2015c). The co-occurrence of the ant and mistletoe is very local or patchy in distribution. The ant has been recorded more frequently in coastal eucalypt woodland on loamy sand and sand, and the butterfly may well breed in this habitat.
Larval food plant
Amyema sanguinea (Loranthaceae).

Attendant ant
Froggattella kirbii (Formicidae: Dolichoderinae). The larvae and pupae are constantly attended by numerous Froglet Ants (*F. kirbii*) in an obligatory myrmecophilous association (Braby 2015a, 2015e).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Most adults have been recorded or reared during the second half of the year (July–December), but we have too few records (*n* = 15) to assess any seasonal changes in abundance. The immature stages have been recorded in the late dry season (August–October) and sporadically during the wet season (November–March). Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
VU, B2ab(ii)(iii). The subspecies *O. iphis doddi* is currently listed as Endangered (EN) under the *TPWCA*. However, available data suggest VU is a more appropriate Red List category. The taxon is a short-range endemic (AOO is likely to be < 2,000 sq km, with spatial buffering of extant records providing a first approximation of 1,400 sq km). Despite targeted searching, it is currently known from only two extant locations, one of which is in a conservation reserve (Garig Gunak Barlu National Park) (Braby 2015a). The population at Darwin (Parap) is no longer extant due to extensive urbanisation. Braby (2000) and Meyer et al. (2006) recorded a possible sighting at Bens Hill near Darwin in 1992, but the habitat surrounding this small hilltop has since been cleared for development. The population on the Tiwi Islands (Melville Island) has no doubt been severely compromised, if not eliminated, by extensive loss of its critical habitat for timber plantation, and there are similar threats facing Bathurst Island to develop potential breeding habitat for agriculture. Inappropriate fire regime is another threat because the mistletoe food plant is sensitive to frequent hot fires; *Amyema sanguinea* is variously killed by fire or it may resprout from haustorial tissue after being burnt (Start 2013). It is likely that *O. iphis* is now restricted to habitats that are infrequently burnt or in which fires are less intense and do not frequently scorch the canopy of the host trees (*Eucalyptus, Corymbia*) supporting mistletoe clumps. It is also suspected that the species does not tolerate habitat fragmentation and it may require relatively large intact landscapes to persist (Braby 2015a). Targeted field surveys to clarify the distribution and ecological requirements should be a high priority for this species.
Northern Purple Azure
Ogyris zosine (Hewitson, [1853])

Distribution
This species is represented in the study region by the subspecies *O. zosine zosine* (Hewitson, [1853]). It occurs very widely in the region, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 500 mm mean annual rainfall), as well as the arid zone of central Australia beyond the southern boundary of the study region. Its southernmost limits include 100 km south of Broome and Fitzroy Crossing, WA (Field 1990b); Elliott, NT (Le Souef 1971); and 45 km east–south-east of Camooweal, Qld. Its wide geographic range corresponds well with the spatial distribution of its larval food plants. The larval food plants also occur on the Tiwi Islands; thus, further field surveys are required to determine whether *O. zosine* occurs on Bathurst and Melville islands, NT. Outside the study region, *O. zosine* occurs throughout most of the northern half of Australia, as well as in the semi-arid areas of southern Western Australia.

Larval food plants
Amyema benthamii, A. bifurcata, A. miquelii, A. sanguinea, A. villiflora, Decaisnina signata, Diplatia grandibractea (Loranthaceae).

Attendant ants
Camponotus oetkeri, Camponotus sp. (crozieri group), Camponotus sp. (humilior group), Camponotus sp. (novaehollandiae group) (Formicidae: Formicinae). The larvae and pupae are constantly attended by numerous Sugar Ants (*Camponotus* spp.) in an obligatory myrmecophilous association (Braby 2011a; Weir et al. 2011). Very occasionally the immature stages may be associated with *Iridomyrmex pallidus* ants in disturbed suburban areas (Weir et al. 2011), although the nature of this association has not been established.

Seasonality
Adults occur throughout the year. They appear to show little seasonal variation in abundance, although they tend to be more numerous during the second half of the year, particularly during the mid to late dry season (July–October). The immature stages have been recorded during most months of the year, especially during the dry season, indicating that the species breeds continuously. Presumably, several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC. In some areas of the range, inappropriate fire regimes, particularly frequent burning and/or intense landscape fires, are a threat because the mistletoe food plants are highly susceptible to fire.
9. BLUES

![Map of Ogyris zosine showing relative abundance (%)]

Ogyris zosine
- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

![Bar chart showing relative abundance (n = 64)]

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Ogyris zosine (n = 64)
Amethyst Hairstreak
Jalmenus icilius Hewitson, [1865]

Distribution
This species is restricted to the Northern Deserts and western Gulf Country, where it occurs in the semi-arid and arid zones (<400 mm mean annual rainfall) in the far south-eastern corner of the study region. It has been recorded 30 km south-east of Barkly Homestead Roadhouse, NT (Braby 2000), and from two locations just outside the southern and eastern boundaries: 120 km east of Argadargada Station, NT (J. Archibald), and 59 km (by road) north–north-east of Burke & Wills Roadhouse, Qld (Dunn 2016). The spatial distribution of the larval food plants is substantially more widespread in the semi-arid zone; thus, further field surveys are required to determine whether *J. icilius* is similarly more widespread than present records indicate. Outside the study region, *J. icilius* occurs widely in the arid and semi-arid areas of central, south-western and south-eastern Australia.

Material from the western Gulf Country (Dunn 2016) is provisionally placed here pending further taxonomic investigation of this population. The specimens are rather distinct and may prove to be *J. daemeli* Semper, 1879 or a species allied to it.

Habitat
The breeding habitat of *J. icilius* has been recorded only from semi-arid and arid areas just outside the study region, where the species is associated with shrubs of the larval food plants growing in open grassland with scattered shrubs or in mixed open woodland, and where colonies of the attendant ant are established.

Larval food plants
Acacia aneura, A. tetragonophylla, Senna artemisioides (Fabaceae).

Attendant ants
Iridomyrmex chasei, Iridomyrmex sp. (*rufoniger* group) (Formicidae: Dolichoderinae). The larvae and pupae are constantly attended by numerous small black ants in an obligatory myrmecophilous association.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded in ‘autumn’ (March and April) and again in ‘spring’ (October). In central Australia, they have also been commonly recorded in September (Field 1990a; Grund 2005); however, they have also been collected at other times of the year (for example, in January and February), possibly depending on rainfall. Presumably, the species completes several generations annually and the eggs remain in diapause during the cooler winter months or possibly during prolonged dry periods.

Breeding status
This species is resident in the study region.

Conservation status
LC. Although the species *J. icilius* has a narrow range in the study region (EOO = 22,530 sq km), there are no known threats facing the taxon. However, it is currently not known from any conservation reserves.
Black-spotted Flash
Hypolycaena phorbas (Fabricius, 1793)

Previously, the name _H. phorbas ingura_ Tindale, 1923 was applied to populations in northern Australia as a subspecies endemic to the region, but Lambkin (2006) concluded that _H. phorbas ingura_ did not differ from the nominate subspecies from the northern Torres Strait Islands, QLD.

Habitat

Hypolycaena phorbas breeds in a variety of habitats, including semi-deciduous monsoon vine thicket and mixed eucalypt woodland and riparian woodland with rainforest elements in the understorey, where the larval food plants grow and arboreal nests of the attendant ant are established. The food plants are usually tall shrubs or small trees in the understorey, but are sometimes vines (_Smilax australis_) or mistletoes (_Decaisnina signata_).

Larval food plants

Clerodendrum floribundum (Lamiaceae), _Planchonia careya_ (Lecythidaceae), _Decaisnina signata_ (Loranthaceae), _Breynia cernua_ (Phyllanthaceae), _Smilax australis_ (Smilacaceae). The larvae feed on several food plants, but they are frequently found on _C. floribundum_.

Attendant ant

Oecophylla smaragdina (Formicidae: Formicinae). The larvae and pupae are constantly attended by numerous Green Tree Ants (_O. smaragdina_) in an obligatory myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality

Adults occur during most months of the year, but they are most abundant during the wet season and early dry season (January–May), and are very scarce during the late dry season (August–October). The immature stages have been recorded during the wet season and early dry season (November–May), when population numbers are higher. Presumably, the species breeds continuously throughout the year and several generations are completed annually given there is no evidence of diapause in any of the life history stages.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Hypolycaena phorbas

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature < 1970
- Larval food plants
- Attendant ant

Hypolycaena phorbas

- Species record
- Geographic range
- Phytophagous boundary
- IBRA bioregional boundary

Hypolycaena phorbas (n = 173)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Princess Flash
Deudorix smilis Hewitson, [1863]

Distribution

This species is represented by the subspecies *D. smilis dalyensis* (Le Souëf & Tindale, 1970), which is endemic to the study region. *Deudorix smilis* does not occur elsewhere in Australia. It occurs mainly in the western half of the Top End, where it is restricted to the higher rainfall areas (> 900 mm mean annual rainfall, but mainly > 1,200 mm). It has been recorded as far south as Daly River (Ooloo Crossing) (Le Souëf and Tindale 1970; Hutchinson 1978) and as far east as Wongalara Wildlife Sanctuary (Echo Gorge) (Braby 2012a). **NT**. Although the larval food plant is considerably more widespread, extending into the drier areas of the Northern Deserts and the Kimberley, targeted searches in these areas have not detected *D. smilis*. However, the plant does occur in northern and north-eastern Arnhem Land and Groote Eylandt, **NT**, where the rainfall and habitat are potentially more suitable. Further surveys are therefore required in the eastern half of the Top End and nearby islands to determine whether *D. smilis* is present in these areas. Outside the study region, *D. smilis* occurs from the Andaman Islands, Burma (Myanmar) and the Malay Peninsula to Indonesia, including Maluku.

Habitat

Deudorix smilis breeds in semi-deciduous monsoon vine thicket on coastal sand dunes and lateritic cliffs above the beach, on inland sandstone hills or rocky outcrops, in the edges of evergreen monsoon vine forest associated with permanent freshwater streams or in the ecotone between monsoon forest and eucalypt woodland where the larval food plant grows as a tall deciduous shrub or small tree up to 6 m high (Braby 2016c). Adults also fly in open woodland and males congregate on hilltops to locate females, but they do not breed in these habitats.

Larval food plant

Strychnos lucida (Loganiaceae).

Attendant ant

Crematogaster sp. 3 (Group A) (**Formicidae**: Myrmicinae). The larvae and pupae are usually not attended by ants, but very occasionally the pupae are attended by a small number of black and tan ants (Eastwood et al. 2008; Braby 2016c).

Seasonality

Adults occur during most months of the year, but they are most abundant during the mid dry season (May–July), with a peak in abundance in June. The fruits of the larval food plant are generally seasonal, being more numerous during the early to mid dry season, and it is during this period that the immature stages of the butterfly are abundant. However, the immature stages have also been found on young (green) and ripe (orange) fruits sporadically at other times of the year, including during the ‘build-up’ and wet season (October–April). Presumably, the species breeds continuously throughout the year and several generations are completed annually given there is no evidence of diapause in any of the life history stages.

Breeding status

This species is resident in the study region.

Conservation status

LC. The subspecies *D. smilis dalyensis* has a restricted range within which it occurs in several conservation reserves, including Casuarina Coastal Reserve, Black Jungle Conservation Reserve, Mary River National Park, Garig Gunak Barlu National Park, Kakadu National Park and Wongalara Wildlife Sanctuary, **NT**. It is currently not threatened, but it may be susceptible to habitat loss and fragmentation because it appears to depend on relatively large patches of monsoon forest and/or a network of smaller interconnected patches of monsoon forest embedded within the savannah matrix (Braby 2016c).
Sword-tail Flash
Bindahara phocides (Fabricius, 1793)

Larval food plants
Not recorded in the study region; probably *Salacia chinensis* (Celastraceae), which is a larval food plant in north-eastern Queensland (Braby 2000).

Attendant ant
Not recorded in the study region. In Queensland, the larvae and pupae are not attended by ants (Eastwood and Fraser 1999; Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The adult was recorded during the wet season (January).

Breeding status
The breeding status of *B. phocides* is uncertain. It may well be resident in the Top End, but the specimen observed at Nathan River was possibly a vagrant from coastal areas further north. The specimen captured was, however, in relatively good condition, with the long hindwing tails intact (M. Kessner, pers. comm.), suggesting it may have bred locally.

Conservation status
DD. The distribution and critical habitat of the species *B. phocides* are poorly known. Targeted field surveys in coastal areas extending from the Wessel Islands and Gove Peninsula to Limmen Bight in the Gulf of Carpentaria are required to determine whether the species is established with permanent breeding populations.

Distribution
This species is known only from an observation made in the Gulf of Carpentaria at Limmen National Park (Nathan River Ranger Station), NT, where a specimen was collected and released in January 2009 (M. Kessner). The species has not previously been recorded from the study region, but presumably it is the subspecies *B. phocides yurgama* Couchman, 1965, which occurs in north-eastern Queensland. The putative larval food plant (*Salacia chinensis*) occurs along the northern coastline of the Top End, some 400 km further north of where the specimen was captured. Outside the study region, *B. phocides* occurs widely from India and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern Australia to the Bismarck Archipelago and the Solomon Islands.

Habitat
The breeding habitat of *B. phocides* has not been recorded in the study region. The specimen was recorded in a residential garden (rangers’ quarters) surrounded by natural dry woodland in which the mean annual rainfall is about 700 mm; however, the putative larval food plant (*Salacia chinensis*) grows as a vine in coastal semi-deciduous monsoon vine thicket close to the beach in the higher rainfall areas (> 1,300 mm mean annual rainfall).
Bindahara phocides

- Observation ±1970
- Putative larval food plant

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Photo: Boodjamulla/Lawn Hill National Park, Qld. M.F. Braby
Trident Pencil-blue, Northern Pencil-blue

Candalides margarita (Semper, 1879)

Habitat

Candalides margarita breeds in savannah woodland and patches of evergreen monsoon vine forest and semi-deciduous monsoon vine thicket where the larval food plants grow as mistletoes (parasitic shrubs) on various trees (Dodd 1935d; Samson and Wilson 1995; Braby 2008b, 2015e). In Darwin, NT, it also occurs in suburban parks and gardens where the food plant (*Decaisnina signata*) frequently parasitises *Alstonia actinophylla* and *Planchonia careya*. Males readily congregate on hilltops to locate females, but they do not breed in these habitats.

Larval food plants

Amyema miquelii, *A. sanguinea*, *A. villiflora*, *Decaisnina signata*, *Decaisnina triflora*, *Dendrophthoe glabrescens*, *Dendrophthoe odontocalyx* (Loranthaceae).

Attendant ant

Crematogaster sp. (Formicidae: Myrmicinae). The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few ants (Samson and Wilson 1995; Meyer 1996a; Braby 2008b).

Seasonality

Adults occur throughout the year, but they are most abundant during the mid dry season (June–August), although they may be locally common at other times of the year. The immature stages have been recorded in each month of the year and the life cycle is completed relatively quickly (approximately one month), indicating that breeding occurs continuously and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Candalides margarita

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Twin Dusky-blue

Candalides geminus E. D. Edwards & Kerr, 1978

Distribution

This species is represented by the subspecies *C. geminus gagadju* Braby, 2017, which is endemic to the study region. It occurs in the Top End, its presence in the region first reported by Kikkawa and Monteith (1980) based on a small series of specimens collected in 1979. Examination of material in the ANIC, however, indicated that it was detected seven years earlier, in October 1972, based on a pair collected from western Arnhem Land by I. F. B. Common, E. D. Edwards and M. S. Upton (Braby 2017). It has a patchy and restricted distribution, occurring in Litchfield National Park and on the Arnhem Land Plateau, where it has been recorded at Kakadu and Nitmiluk (Katherine Gorge) national parks and Wongalara Wildlife Sanctuary, NT (Braby 2012a). Although the larval food plants are very widely distributed throughout the study region, *C. geminus* is confined to areas where the plants grow on sandstone in the higher rainfall areas (> 900 mm mean annual rainfall). Outside the study region, *C. geminus* occurs sporadically in north-eastern and eastern Australia.

Habitat

Candalides geminus breeds in eucalypt heathy woodland and open woodland with a spinifex understorey on rocky sandstone escarpments and plateaus where the larval food plants grow as scrambling parasitic vines in the understorey (Braby 2011a, 2017).

Larval food plants

Casyptha filiformis, C. capillaris (Lauraceae). The usual food plant is *C. filiformis*, but *C. capillaris* is also used where it is present (Braby 2011a).

Attendant ant

The larvae and pupae are not attended by ants.

Seasonality

Adults have been recorded during most months of the year, but they appear to be more abundant during the wet season (November–January) and again in the mid dry season (July). The immature stages have been recorded during most months of the year, except March, and the life cycle is completed relatively quickly (approximately one month), indicating that breeding occurs continuously and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC. The subspecies *C. geminus gagadju* is a narrow range endemic (geographic range = 39,940 sq km) and occurs in at least three conservation reserves: Litchfield and Kakadu national parks and Wongalara Wildlife Sanctuary. Despite its restricted occurrence, there are no known threats facing the taxon.
Candalides geminus

Relative abundance (%)

Month

Candalides geminus (n = 42)

Relative abundance (%)
Small Dusky-blue
Candalides erinus (Fabricius, 1775)

Distribution
This species is represented in the study region by the subspecies *C. erinus erinus* (Fabricius, 1775). It occurs very widely in the Kimberley, Top End, Northern Deserts and western Gulf Country, extending from moist coastal areas to the lower rainfall areas of the semi-arid zone (< 500 mm mean annual rainfall). In the inland it has been recorded as far south as the Edgar Ranges (Common 1981) and Landrigan Creek crossing (Williams et al. 2006), WA; 50 km south–south-east of Elliott, NT; and Boodjamulla/Lawn Hill National Park (Daniels and Edwards 1998) and Rotary Lookout 2 km west of Cloncurry (Dunn 2017a), Qld. The geographical range corresponds well with the spatial distribution of its larval food plants, which are similarly widespread. Outside the study region, *C. erinus* occurs in the Pilbara of Western Australia and in north-eastern and eastern Australia.

Habitat
Candalides erinus breeds in a variety of habitats, including savannah woodland on various substrates, eucalypt woodland with rainforest elements in the understorey, the ecotone between evergreen monsoon vine forest and eucalypt woodland, semi-deciduous monsoon vine thicket, paperbark woodland and paperbark–pandanus swampland, where the larval food plants grow as scrambling parasitic vines in the understorey.

Larval food plants
Cassytha filiformis, C. capillaris (Lauraceae).

Attendant ant
Iridomyrmex sp. (*mattiroloi* group) (Formicidae: Dolichoderinae). The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few small black ants (Braby 2011a).

Seasonality
Adults occur throughout the year, but they are most abundant during the first half of the year, particularly during the mid dry season (May–July), and are very scarce during the late dry season and early wet season (September–December). The immature stages have been recorded during most months of the year, being particularly prevalent during the wet season and early dry season (February–May), when adults are most numerous. The life cycle is completed relatively quickly (approximately one month), indicating that breeding occurs continuously and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Candalides erinus

- **Specimen ≥1970**
- **Observation ≥1970**
- **Literature ≥1970**
- **Specimen <1970**
- **Literature <1970**
- **Larval food plants**

Relative abundance (%)

Month

- **Candalides erinus**

- **Species record**
- **Geographic range**
- **Phytogeographical boundary**
- **IBRA (bioregional) boundary**

Candalides erinus (n = 367)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Spotted Dusky-blue
Candalides delospila (Waterhouse, 1903)

Habitat
Candalides delospila breeds in savannah woodland and eucalypt low open woodland with a hummock (spinifex) grass understorey and hummock grassland on loamy sand, sandstone escarpments, plateaus and platforms, where the larval food plant grows as a fine scrambling parasitic vine over clumps of spinifex (*Triodia*) and other grasses (Braby 2011a).

Larval food plant
Cassysta capillaris (Lauraceae).

Attendant ant
Iridomyrmex sp. (*gracilis* group) (Formicidae: Dolichoderinae). The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few small black ants (Braby 2011a).

Seasonality
The seasonal occurrence of adults, breeding phenology and seasonal history of the immature stages are not well understood. Adults have been recorded sporadically from January to October, with apparent peaks in abundance in March, July and August, but none has been recorded during the late dry season (November and December), when conditions are typically very hot. Similarly, the immature stages have been recorded sporadically from February to September. The life cycle is completed relatively quickly (approximately seven weeks), but it is not known whether the species undergoes pupal diapause. Presumably, the seasonal pattern is similar to *Candalides erinus*, in which adults are most abundant during the first half of the year, with a possible peak during the mid dry season (July), during which several generations are completed, but it remains to be established whether the species breeds during the late dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Candalides delospila

Relative abundance (%)

Month

Egg
Larva
Pupa
Adult

Month	J	F	M	A	M	J	J	A	S	O	N	D
Egg | | | | | | | | | | | | |
Larva | | | | | | | | | | | | |
Pupa | | | | | | | | | | | | |
Adult | | | | | | | | | | | | |
Spotted Opal
Nesolycaena urumelia (Tindale, 1922)

Distribution
This species is endemic to the study region. It occurs widely in the Top End and western Gulf Country, generally in the higher rainfall areas (> 800 mm mean annual rainfall), although it has been recorded in the semi-arid zone in western Queensland (c. 500 mm). Its southernmost limits include Spirit Hills (42 km north-east of Keep River National Park ranger station) and McArthur River Homestead (Edwards 1980), NT; and Boodjamulla/Lawn Hill National Park, Qld (Braby 1996; Daniels and Edwards 1998). The geographic range corresponds well with the spatial distribution of its larval food plants in the Northern Territory. Although the food plants extend to the Kimberley, the species is replaced with *Nesolycaena caesia* in northern Western Australia. However, *N. urumelia* does not appear to have been recorded from the Tiwi Islands despite the presence of the larval food plants; thus, further field surveys are required to determine whether *N. urumelia* is established on Bathurst and Melville islands, NT.

Habitat
Nesolycaena urumelia breeds in eucalypt heathy woodland and open woodland on sandstone outcrops, escarpments, plateaus and breakaways or scree slopes below cliffs and in mixed riparian woodland along sandstone gorges where the larval food plants grow as shrubs on sand or loamy sand (Edwards 1980; Braby 2011a, 2015c). It also breeds in coastal eucalypt heathy woodland on white sand and lowland sandsheets.

Larval food plants
Boronia lanceolata, *B. lanuginosa*, *B. laxa*, *B. wilsonii* (Rutaceae). The main food plants are *B. lanceolata* and *B. lanuginosa* (Edwards 1980; Meyer 1996a; Braby 2000, 2011a); however, larvae also feed on *B. laxa* in western Arnhem Land (Braby 2011a) and *B. wilsonii* at Spirit Hills, NT (Braby 2015c).

Attendant ant
Polyrhachis gab (Formicidae: Formicinae), *Monomorium* sp. 8 (*carinatum* group) (Formicidae: Myrmicinae). The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few ants (Edwards 1980; Meyer 1996a; Eastwood et al. 2008).

Seasonality
Adults occur during most months of the year, but they are generally most abundant during the wet season (January–April) after average or above average rainfall, with a peak in abundance in April. Their numbers diminish as the dry season progresses, and they are scarce towards the end of the dry season (August–October). The immature stages (eggs or larvae) have been recorded during most months of the year except during the late dry season (August–October). Pupae from larvae reared in April or May remain in diapause for up to six months or more during the dry season (Edwards 1980; M. F. Braby, unpublished data). These observations suggest breeding is seasonal and restricted largely to the wet season and early dry season, during which several generations are completed.

Breeding status
This species is resident in the study region.

Conservation status
LC. Although the species *N. urumelia* has a wide geographical range, some areas are potentially threatened by inappropriate fire regimes. Sands and New (2002) suggested the species and/or its larval food plants are sensitive to too frequent burning of sandstone plant communities, and this may be a threatening process in some areas of the range such as the Arnhem Land Plateau (see also Russell-Smith et al. 1998, 2002). The food plants are obligate seeders and, if the fire regime is too frequent, with short interfire intervals (every one to two years), there may be little or no recruitment. That is, in some areas of the range, the population...
of *N. urumelia* may be reduced in future based on a projected decline in the AOO and/or quality of its habitat. Although two of the larval food plants (*B. lanceolata, B. lanuginosa*) are currently listed as Least Concern (LC), the two other species (*B. laxa, B. wilsonii*) are listed as Near Threatened (NT) under the TPWCA. Thus, *N. urumelia* may qualify as Near Threatened (NT) in future. Monitoring of the abundance or occupancy of the butterfly and its food plants is required to clarify the effect of fire as a key threatening process. The fire regime on the sandstone plateau–breakaway country needs to be carefully managed (e.g. at least more than five years) to ensure the food plants have sufficient time to mature, flower and set seed.
Kimberley Opal

Nesolycaena caesia d’Apice & Miller, 1992

Distribution

This species is endemic to the study region. It was described only as recently as 1992, two years after it was first discovered, in June 1990 (d’Apice and Miller 1992). It is restricted to northern Western Australia, where it has been recorded in the higher rainfall areas of the northern Kimberley at and near Kalumburu (d’Apice and Miller 1992) and on Jar and Steep Head islands (J. E. and A. Koeyers), and in the lower rainfall areas of the eastern Kimberley (El Questro Wilderness Park, WA) (Meyer 1996c). Its main larval food plant (*Boronia wilsonii*) is substantially more widespread, particularly in the western Kimberley south-west to King Sound; thus, further field surveys are required to determine whether *N. caesia* is established in this area.

Habitat

Nesolycaena caesia breeds in eucalypt heathy low woodland on sandstone outcrops, ridges and breakaways where the larval food plants grow as small shrubs on sandy soil (d’Apice and Miller 1992; Meyer et al. 2013).

Larval food plants

Boronia kalumburuensis, *B. wilsonii* (Rutaceae). The main food plant is *B. wilsonii* (d’Apice and Miller 1992; Grund and Hunt 2001; Meyer et al. 2013).

Attendant ant

Iridomyrmex sp. (Formicidae: Dolichoderinae). The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few ants (Eastwood and Fraser 1999; Meyer et al. 2013).

Seasonality

Adults have been recorded during most months of the year (November–July), but there are too few records (n = 15) to assess any seasonal changes in abundance. In general, they have been noted to be more numerous during the wet season (January–April) (Meyer et al. 2013; J. E. and A. Koeyers, pers. comm.). The breeding phenology and seasonal history of the immature stages are not well understood. The immature stages (eggs or larvae) have been recorded in November and from March to July. The pupal stage is known to remain in diapause for up to eight months during the dry season (Braby 2000). Presumably, the life cycle strategy is similar to *Nesolycaena urumelia* in which breeding is seasonal and restricted to the wet season and early dry season, during which several generations are completed, and adults are scarce or absent during the late dry season (August–October).

Breeding status

This species is resident in the study region.

Conservation status

DD. The species *N. caesia* is a short-range endemic (EOO = 9,170 sq km). It currently lacks adequate protection because most sites occur outside conservation reserves, although it does occur in the Uunguu IPA. However, it may be impacted by inappropriate fire regimes. The larval food plants are obligate seeders and if the fire regime on sandstone plant communities is too frequent, with short interfire intervals (every one–two years), there may be little or no recruitment. That is, the population of *N. caesia* may be reduced in future based on a projected decline in the AOO and/or quality of its habitat. Thus, the taxon may qualify as Near Threatened (NT) once adequate data are available. Monitoring of the abundance and occupancy of the butterfly and its food plants is required to clarify the effect of fire frequency as a key threatening process.
Pale Ciliate-blue
Anthene lycaenoides (C. Felder, 1860)

Habitat
Anthene lycaenoides breeds mainly in monsoon forest, including riparian evergreen monsoon vine forest along permanent freshwater streams, semi-deciduous monsoon vine thicket and riparian paperbark open forest with rainforest elements in the understorey, where the larval food plants usually grow as small trees. It also occurs in suburban parks and gardens where the food plants are propagated as ornamental trees.

Larval food plants
Milletia pinnata, *Senna surattensis* (Fabaceae), *Flagellaria indica* (Flagellariaceae), *Barringtonia acutangula* (Lecythidaceae), *Bridelia tomentosa* (Phyllanthaceae), *Cupaniopsis anacardioides* (Sapindaceae).

Attendant ants
Crematogaster spp. (Formicidae: Myrmicinae). The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few ants (Meyer 1996a).

Seasonality
Adults occur during most months of the year, but the patterns of their seasonal changes in abundance are not entirely clear. Adults are rarely observed in large numbers. Our limited data suggest they are more numerous during the late dry season, wet season and early dry season, with a possible peak in abundance in April and May, but are scarce during the mid dry season (June–August). The breeding phenology is not well understood. The larvae feed on flower buds and flowers, and the immature stages have been recorded sporadically during the wet season (December–April) and also in July. Presumably, the species breeds continuously throughout the year and several generations are completed annually by switching its food plants on a seasonal basis.

Breeding status
This species is resident in the study region.

Conservation status
LC.
9. BLUES

Anthene lycaenoides

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Literature <1970
- Larval food plants

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Dark Ciliate-blue
Anthene seltuttus (Röber, 1886)

Habitat

Anthene seltuttus breeds mainly in the edges of semi-deciduous monsoon vine thicket, in both coastal and inland areas, and in mixed riparian open forest with rainforest elements in the understorey where the larval food plants (*Millettia pinnata* and *Cupaniopsis anacardioides*) grow as understorey trees and where arboreal nests of the attendant ant are established. It also breeds in the ecotone between savannah woodland and monsoon forest where saplings of an alternative food plant (*Corymbia disjuncta*) grow (Braby 2015e).

Larval food plants

Millettia pinnata (Fabaceae), *Corymbia disjuncta* (Myrtaceae), *Cupaniopsis anacardioides* (Sapindaceae); also *Delonix regia* (Fabaceae), *Litchi chinensis* (Sapindaceae).

Attendant ant

Oecophylla smaragdina (Formicidae: Formicinae). The larvae and pupae are constantly attended by numerous Green Tree Ants (*O. smaragdina*) in an obligatory myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality

Adults occur throughout the year, but they are generally more abundant during the wet season (November–April). The breeding phenology is not well understood. The larvae feed on new soft leaves, and the immature stages have been recorded during the second half of the year (August–December) and also in April. Presumably, the species breeds continuously throughout the year and several generations are completed annually by switching its larval food plants on a seasonal basis.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Anthene seltuttus

Relative abundance (%)

Month

Anthene seltuttus (n = 68)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Mauve Line-blue

Petrelaea tombugensis (Röber, [1886])

Distribution

This species is known from only two locations within the study region: in the northern Kimberley on the Carson River crossing 18 km south–south-east of Kalumburu, WA, based on six specimens collected in May 2015 (Braby 2015b); and in the Top End at Black Point on Cobourg Peninsula, NT, based on two males collected in January 1977 (Common and Waterhouse 1981; Braby 2015b). The putative larval food plants (*Terminalia* spp.) have a disjunct distribution that largely corresponds with the known geographic range of *P. tombugensis*; *Terminalia muelleri* is known only from the northern Kimberley (Vansittart Bay, WA) and Cobourg Peninsula (Coral Bay, NT), whereas *T. catappa* is known further east on the Wessell Islands and Gove Peninsula, NT. Further field surveys are thus required to determine whether *P. tombugensis* is present in north-eastern Arnhem Land. Outside the study region, *P. tombugensis* occurs from the Andaman Islands and Maluku, through mainland New Guinea and north-eastern Australia to New Britain and the Solomon Islands.

Habitat

The breeding habitat of *P. tombugensis* has not been recorded in the study region. Adults have been collected in coastal semi-deciduous monsoon vine thicket and riparian evergreen monsoon vine forest (Braby 2015b)—habitats in which the species no doubt breeds.

Larval food plants

Not recorded in the study region; probably *Terminalia catappa* and *T. muelleri* (Combretaceae), which are larval food plants in northern Queensland (Samson and Lambkin 2003; Hopkinson and Bourne 2018).

Attendant ant

Not recorded in the study region. In north-eastern Queensland, the larvae and pupae are not attended by ants (Samson and Lambkin 2003; Hopkinson and Bourne 2018).

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded only during the wet season (January) and early dry season (May), but there are too few records (n = 3) to assess any seasonal changes in abundance. In northern Queensland, the larvae feed on flowers of the food plant; adults are seasonal and present only from September to May, which broadly coincides with the flowering period of *Terminalia catappa* and *T. muelleri*, which extends from the ‘build-up’ through the wet season to the start of the dry season (October–May) (Müller et al. 1998; Samson and Lambkin 2003; Hopkinson and Bourne 2018). Presumably, the breeding phenology of *P. tombugensis* in northern Australia is similar to that in northern Queensland. However, it is not known how the species survives the dry season (June–September).
Breeding status
This species is resident in the study region.

Conservation status
DD. Despite the wide geographical range of *P. tombugensis* in the study region, available data suggest it has a disjunct distribution with a limited AOO (is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 1,400 sq km). One of the two known locations occurs in a conservation reserve (Garig Gunak Barlu National Park). Targeted field surveys to clarify the extent of its distribution and ecological requirements should be a priority for this species.
White-banded Line-blue
Nacaduba kurava (Moore, [1858])

Habitat

Nacaduba kurava breeds mainly in riparian evergreen monsoon vine forest associated with permanent freshwater streams where the known larval food plant grows as a rambling woody vine (Meyer 1996b). Adults have also been recorded in semi-deciduous monsoon vine thickets on laterite in coastal areas and on limestone outcrops in inland areas, where they do not doubt breed on alternative food plants.

Larval food plants

Embelia curvinervia (Primulaceae). The recorded food plant is the vine *E. curvinervia* (Meyer 1996b); however, Common and Waterhouse (1981: 550) reported an additional species, noting at Katherine that a female ‘was reared from a larva feeding on the young foliage of a rain-forest tree growing on the bank of the Katherine River’. The identity of this second food plant has not been determined.

Attendant ant

The larvae and pupae are not attended by ants.

Seasonality

Adults occur throughout the year, and they appear to be more numerous during the second half (July–December, and January), but there are too few records (*n* = 27) to assess any seasonal changes in abundance. The larvae feed on new leaf growth and flowers. We have recorded the immature stages during the early dry season (April–July), although Meyer (1996b: 74) noted that the ‘larvae occur throughout the year but are numerous from May to July’. Presumably, the species breeds throughout the year and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC. The subspecies *N. kurava felsina* is a narrow-range endemic (EOO = 25,250 sq km) and occurs in at least one conservation reserve (Fish River Station). Despite its restricted occurrence and poor level of protection, there are no known threats facing the taxon. The larval food plant is currently listed as Least Concern (LC) under the TPWCA.
Nacaduba kurava

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Literature <1970
- Larval food plant

Nacaduba kurava

- Species record
- Geographic range
- Physico-geographical boundary
- IBRA bioregional boundary

Nacaduba kurava (n = 27)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Two-spotted Line-blue
Nacaduba biocellata (C. & R. Felder, 1865)

Distribution
This species is represented in the study region by the subspecies *N. biocellata biocellata* (C. & R. Felder, 1865). It occurs very widely in the region and also extends into the arid zone of central Australia beyond the southern boundary of the study region. It is generally more prevalent in the low rainfall areas of the semi-arid zone. The geographic range corresponds well with the spatial distribution of its larval food plants, which are similarly widespread. Interestingly, both the butterfly and its known food plants are absent from the Tiwi Islands, NT. Outside the study region, *N. biocellata* occurs in the Lesser Sunda Islands and throughout Australia, Vanuatu and New Caledonia.

Habitat
Nacaduba biocellata breeds in savannah woodland and open woodland where the larval food plants grow as small trees (Braby 2015e).

Larval food plants
Acacia plectocarpa, *A. torulosa*, *A. tumida* (Fabaceae). The immature stages and male mate-location behaviour have been recorded associated with at least three species of *Acacia* (Braby 2015e), but presumably *N. biocellata* utilises a much wider range of *Acacia* spp. than currently recorded (Dunn 2017c).

Attendant ant
Not recorded in the study region. Elsewhere, the larvae and pupae are usually not attended by ants, but very occasionally they are attended by a few ants (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults have been recorded during most months of the year, but they are most abundant during the mid and early dry seasons (May–August), with a pronounced peak in abundance in July, and are generally rare or absent in most years during the ‘build-up’ and wet season (October–April). The breeding phenology and seasonal history of the immature stages are not well understood. Larvae have been collected and reared on flowers of the larval food plant in May. There are no published records of migration of the species, but it is strongly suspected that populations are highly mobile and can disperse considerable distances (F. Douglas, pers. comm.). Presumably, *N. biocellata* colonises much of the study region—or at least the higher rainfall areas of the region—on a seasonal basis; breeding is limited to the dry season, when their larval food plants are in flower, and it then vacates much of the region or contracts to the arid zone during the hot humid months. The few records during the wet season possibly represent vagrants or temporary local breeding populations in some years.

Breeding status
Nacaduba biocellata appears to be a regular immigrant in the study region, breeding temporarily during the dry season and then vacating the region or contracting to the drier inland areas before the onset of the wet.

Conservation status
LC.
9. BLUES

Nacaduba biocellata

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Larval food plants

Relative abundance (\%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Purple Line-blue
Prosotas dubiosa (Semper, [1879])

Distribution
This species is represented in the study region by the subspecies *P. dubiosa dubiosa* (Semper, [1879]). It occurs in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 700 mm mean annual rainfall). Its southern limits include Broome (Common and Waterhouse 1981) and Lake Argyle (Dunn 1980), WA; and Jasper Gorge about 58 km south-west of Victoria River Roadhouse (Franklin et al. 2005) and Bessie Spring (Dunn and Dunn 1991), NT. It has also been recorded further east in the Gulf of Carpentaria at Walker Creek 36 km east of Karumba, Qld, just outside the eastern boundary of the study region (Dunn 2017c). Comparison of the geographic range with the spatial distribution of its larval food plants indicates that the known food plants are absent from much of the range of *P. dubiosa* in the Kimberley, indicating that other (as yet unreported) food plants are used in this area. Outside the study region, *P. dubiosa* occurs widely from India and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Solomon Islands.

Habitat
Prosotas dubiosa breeds in a wide variety of habitats, including semi-deciduous monsoon vine thicket, the edges of riparian evergreen monsoon vine forest, savannah woodland and eucalypt heathy woodland, where the larval food plants usually grow as tall shrubs or small trees (Braby 2011a, 2015e).

Larval food plants
Semecarpus australiensis (Anacardiaceae), *Acacia auriculiformis*, *A. scopulorum*, *Millettia pinnata* (Fabaceae), *Cupaniopsis anacardioides* (Sapindaceae); also *Dalbergia sissoo* (Fabaceae).

Attendant ant
The larvae and pupae are not attended by ants.

Seasonality
Adults occur throughout the year, but they are generally more abundant during the mid to late dry season (June–October), with peaks in abundance in July and October, but they may also be locally abundant at other times of the year (e.g. April), depending on the seasonal availability of flower buds. The immature stages have been recorded sporadically from April to December, but undoubtedly occur at other times of the year. Presumably, *P. dubiosa* breeds continuously throughout the year and several generations are completed annually by switching its food plants on a seasonal basis according to the flowering period of each species.

Breeding status
This species is resident in the study region.

Conservation status
LC.
9. BLUES

Prosotas dubiosa

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Prosotas dubiosa (n = 185)

![Bar graph showing relative abundance by month](https://via.placeholder.com/150)

- Bar graph showing relative abundance for Prosotas dubiosa across different months.
- The x-axis represents months from January (J) to December (D).
- The y-axis represents relative abundance in percentage (%).
Speckled Line-blue
Catopyrops florinda (Butler, 1877)

Distribution
This species is represented in the study region by the subspecies *C. florinda estrella* (Waterhouse & Lyell, 1914). It occurs very widely in the region, from the Kimberley, through the Top End and Northern Deserts to the western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (c. 500 mm mean annual rainfall). It has been recorded as far south as the Edgar Ranges (Common 1981) and Halls Creek (Grund and Hunt 2001), WA; Newcastle Waters, NT (Braby 2000); and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998). It has also been recorded at Walker Creek 36 km east of Karumba, Qld, just outside the eastern boundary of the study region (Dunn 2017d). The geographic range corresponds well with the spatial distribution of its larval food plants, indicating that *C. florinda* has been well sampled in the region. Outside the study region, *C. florinda* occurs from Timor, through mainland New Guinea and north-eastern and eastern Australia to New Britain and New Caledonia.

Larval food plants
Mallotus nesophilus (Euphorbiaceae), *Dodonaea hispidula* (Sapindaceae). The immature stages are found frequently on *D. hispidula* (Braby 2011a).

Attendant ant
The larvae and pupae are not attended by ants.

Seasonality
Adults occur throughout the year, but they are most abundant during the dry season (April–September). The immature stages have been recorded sporadically from February to October, but no doubt also occur at other times. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Catopyrops florinda

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Relative abundance (%)

- **Catopyrops florinda**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%) by Month

- J: 5
- F: 1
- M: 4
- A: 8
- M: 6
- J: 9
- J: 13
- A: 8
- S: 5
- O: 4
- N: 5
- D: 4
Glistening Line-blue
Sahulana scintillata (T. P. Lucas, 1889)

Distribution
This species occurs in the north of the Northern Territory, where it is restricted to the higher rainfall areas of the Top End (> 1,200 mm mean annual rainfall, but mostly > 1,400 mm). It appears to be rare, known only from seven locations (Meyer et al. 2006; Franklin et al. 2007a; Braby 2014a). It has been recorded from Darwin to the Mary River crossing (Arnhem Highway) and further east, on the Koolatong River crossing (Gapuwiyk–Balma Track) (Braby 2014a), NT. The putative larval food plants (*Acacia aulacocarpa* and *Cupaniopsis anacardioides*) occur more widely in the Top End; thus, further field surveys are required to determine more precisely the southern extent of *S. scintillata*. Outside the study region, *S. scintillata* occurs in mainland New Guinea and north-eastern and eastern Australia.

Larval food plants
Not recorded in the study region; possibly *Acacia aulacocarpa* (Fabaceae) and *Cupaniopsis anacardioides* (Sapindaceae), which are two larval food plants in eastern Australia (Braby 2000, 2016a).

Attendant ant
Not recorded in the study region. In Queensland, the larvae and pupae are not attended by ants (Eastwood and Fraser 1999; Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults are seasonal, occurring only in the dry season (June–September), but there are too few records (n = 12) to assess temporal changes in abundance. Most records are from June and July. In Queensland, the larvae feed on the flower buds and flowers of their food plants. Presumably, the seasonal appearance of *S. scintillata* in northern Australia is tightly synchronised with the flowering period of its larval food plant(s). However, it is not clear how the species survives the wet season.

Breeding status
This species is resident in the study region.

Conservation status
LC. The species *S. scintillata* has a restricted range in the study region within which it occurs in several conservation reserves, including Casuarina Coastal Reserve, Djukbinj National Park and Mary River National Park. Despite its restricted occurrence, there are no known threats facing the taxon. Further investigations are needed to determine the ecological requirements of this species.

Habitat
The breeding habitat of *S. scintillata* has not been recorded in the study region. Adults have been collected mostly in riparian forest, riparian woodland or riparian paperbark open woodland (Braby 2014a), but they have also been recorded from coastal areas adjacent to mangroves or semi-deciduous monsoon vine thicket (Meyer et al. 2006; Franklin et al. 2007a). Adults have been observed feeding at flowers of *Melaleuca, Lophostemon* and *Calytrix*.
9. BLUES

Sahulana scintillata
- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Literature <1976
- Putative larval food plants

Sahulana scintillata
- Species record
- Geographic range
- Phylogeographical boundary
- IBRA bioregional boundary

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Samphire Blue

Theclinesthes sulpitius (Miskin, 1890)

The published records of *Theclinesthes serpentatus* (Herrich-Schäffer, 1869) for Broome (Peters 2006) and Karumba (Pierce 2008, 2010) are erroneous and refer to *T. sulpitius* (see Braby 2012b, 2015d).

Habitat

Theclinesthes sulpitius breeds in estuarine saltmarsh where the larval food plants grow as samphires in the intertidal zone of rivers and creeks (Meyer and Wilson 1995; Braby 2011a, 2014a, 2015d).

Larval food plants

Tecticornia australasica, T. halocnemoides, T. indica (Amaranthaceae).

Attendant ant

The larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few small black ants of a species yet to be determined (Meyer and Wilson 1995).

Seasonality

Adults have been recorded mainly in the dry season (April–August), as well as in the mid wet season (December and January), but there are too few records to assess any seasonal changes in abundance. We have observed adults to be locally abundant during the mid dry season (June–August). The immature stages (eggs or larvae) have been recorded sporadically from December to June. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC. Although the species *T. sulpitius* has a wide geographical range in the study region, it is known to occur in only one conservation reserve (Djelk IPA).
Theclinesthes sulpitius

- Specimen in 1970
- Observation in 1970
- Literature in 1970
- Larval food plants

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Theclinesthes miskini (T. P. Lucas, 1889)

Distribution
This species is represented in the study region by the subspecies *T. miskini miskini* (T. P. Lucas, 1889). It occurs almost throughout the entire region, from moist coastal areas to drier inland areas of the semi-arid zone; it also extends into the arid zone of central Australia beyond the southern boundary of the study region. The geographic range corresponds with the spatial distribution of its larval food plants, which are similarly very widespread. Outside the study region, *T. miskini* occurs from the Lesser Sunda Islands, Tanimbar and the Kai and Aru islands, through mainland New Guinea and adjacent islands to the Admiralty Islands, the Bismarck Archipelago and the D’Entrecasteaux and Goodenough islands. It also occurs throughout the Australian continent.

Habitat
Theclinesthes miskini breeds mainly in savannah woodland, open woodland and riparian woodland, favouring open disturbed areas where the larval food plants grow as pioneer shrubs, seedlings or saplings regenerating after fire, flood or unnatural events such as roadside earthworks (Braby 2011a, 2015e). It also breeds in the edges of monsoon forest.

Larval food plants
Acacia auriculiformis, A. difficilis, A. holosericea, A. platycarpa, Cathornion umbellatum, Sebania cannabina (Fabaceae), *Corymbia bella, Corymbia disjuncta, Corymbia ferruginea* (Myrtaceae), *Santalum lanceolatum* (Santalaceae), *Atalaya hemiglauca, Atalaya variifolia* (Sapindaceae).

Attendant ants
Iridomyrmex reburrus, I. sanguineus, Iridomyrmex sp. (anceps group), Iridomyrmex sp. (gracilis group), Iridomyrmex sp. (mattiroloi group), Iridomyrmex sp. near minor, I. pallidus (Formicidae: Dolichoderinae), *Camponotus sp. (crozieri group), Camponotus sp. (denticalatus group), Camponotus sp. (novahollandiae group)* (Formicidae: Formicinae). The larvae and pupae are usually attended by varying numbers of ants representing several genera, including Meat Ants (*Iridomyrmex* spp.), small black ants (*Iridomyrmex* spp.) and Sugar Ants (*Camponotus* spp.), in a facultative myrmecophilous association (Braby 2011a, 2015e).

Seasonality
Adults occur throughout the year, but they are most abundant during the first half (January–June), which coincides with the wet season and early dry season, although they may be locally abundant at other times. The immature stages have been recorded during most months of the year, but are observed more frequently during the wet season (December–April), when adults are abundant. The young larvae feed on the new soft leaf growth of the food plants. Presumably, the species breeds continuously throughout the year and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Theclinesthes miskini

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

The bar graph shows the relative abundance (%)

Relative abundance (%) vs Month
Bitter-bush Blue
Theclinesthes albocinctus (Waterhouse, 1903)

Distribution
This species is known only from the low rainfall areas of the south-western Kimberley of the study region. It has been recorded at Cable Beach, Broome, WA (Grund 1998; Johnson and Valentine 2004), its presence detected only as recently as 1997. The larval food plant occurs further east in drier inland areas of the semi-arid zone; thus, further field surveys are required to determine whether *T. albocinctus* occurs in these areas, particularly in the southern and eastern Kimberley. Grund (1996) reported the possible presence of the species at Geikie Gorge National Park and Ord River Gorge, WA, based on putative eggs on vouchered herbarium specimens; however, subsequent searches along the Fitzroy River at Geikie Gorge did not detect the butterfly (Grund 1998). Outside the study region, *T. albocinctus* occurs mainly in arid and semi-arid areas of western, central and southern Australia.

Habitat
Theclinesthes albocinctus breeds in low open shrubland on the landward side of coastal sand dunes where the larval food plant grows as a shrub up to 2 m high.

Larval food plant
Adriana tomentosa (Euphorbiaceae).

Attendant ant
Not recorded in the study region. Elsewhere, the larvae and pupae are usually attended by a few ants representing several genera, in a facultative myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded in the late dry season (September and October). Grund (1998: 67) noted that the larval food plants ‘were generally infested with the early stages of *T. albocincta*’, but provided few details.

Breeding status
This species is resident in the study region.

Conservation status
DD. The species *T. albocinctus* appears to have a limited range in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 700 sq km), and is currently known from only one location, which lacks adequate conservation protection and management. Thus, it may qualify as Near Threatened (NT) once adequate data are available because of its restricted AOO and limited number of locations. Targeted field surveys to clarify the extent of its distribution and identify key threatening processes should be a high priority for this species.
Purple Cerulean

Jamides phaseli (Mathew, 1889)

Larval food plants
Bossiaea bossiaeoides, Canavalia rosea, Cajanus aromaticus, Millettia pinnata, Sesbania simpliciuscula, Tephrosia spechtii (Fabaceae).

Attendant ant
The larvae and pupae are not attended by ants.

Seasonality
Adults occur throughout the year, but they are most abundant during the wet season and early dry season (February–June), depending on the local and seasonal availability of their larval food plants. The immature stages have been recorded mostly from February to May, when adults are abundant, but also in the late dry season (September and October). The larvae feed on the flower buds and new leaf growth of their food plants. Presumably, *J. phaseli* breeds continuously throughout the year and several generations are completed annually by switching its food plants on a seasonal basis according to the flowering period of each species.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This species occurs widely in the Kimberley, Top End and western Gulf Country of the study region. It extends from moist coastal areas to drier inland areas of the semi-arid zone (500 mm mean annual rainfall), reaching its southernmost limits at Broome (Grund 1998; Peters 2006, 2008) and Halls Creek (Grund and Hunt 2001), WA; and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998). The geographic range corresponds well with the spatial distribution of its larval food plants. The food plants, however, also occur on the Tiwi Islands and in the drier areas of the Northern Deserts; thus, further surveys are required to determine whether *J. phaseli* occurs in these areas. Outside the study region, *J. phaseli* occurs in the Torres Strait Islands, Qld, and north-eastern and eastern Australia.

Habitat
Jamides phaseli breeds in a variety of habitats, including savannah woodland and open woodland on rocky sandstone country, where several of the larval food plants (*Bossiaea, Cajanus, Tephrosia*) grow as understorey shrubs, and coastal sand dunes where an alternative food plant (*Canavalia rosea*) grows as a trailing prostrate creeper (Braby 2011a, 2015e). It also occurs in the edges of semi-deciduous monsoon vine thicket and suburban parks and nature strips, where it commonly breeds on trees of *Millettia pinnata*.
Pale Pea-blue
Catochrysops panormus (C. Felder, 1860)

Habitat
Catochrysops panormus breeds mainly in savannah woodland and open woodland where the larval food plants grow as shrubs, often in open rocky areas (Braby 2011a, 2015e).

Larval food plants
Cajanus aromaticus, *C. pubescens*, *Flemingia lineata*, *Sesbania simpliciuscula* (Fabaceae).

Attendant ant
The larvae and pupae are not attended by ants.

Seasonality
Adults occur throughout the year, but they are generally more abundant during the late wet season (February–April), with a peak in abundance in March. Their numbers appear to diminish as the dry season progresses, and they are very scarce at the start of the wet season. We have limited data on the phenology of the immature stages, which have been recorded in the mid wet season and mid dry season. The larvae feed on the flower buds and flowers of their larval food plants. Presumably, *C. panormus* breeds continuously throughout the year and several generations are completed annually by switching its food plants on a seasonal basis according to the flowering period of each species.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Catochrysops panormus

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Long-tailed Pea-blue
Lampides boeticus (Linnaeus, 1767)

Distribution
This species occurs very widely in the study region. It also extends into the arid zone of central Australia beyond the southern boundary of the study region. The species is more prevalent in the low rainfall areas of the semi-arid zone. There are very few records from the Top End north of latitude 13°S (Waterhouse and Lyell 1914; Le Souef 1971; Franklin et al. 2005; Meyer et al. 2006). The geographic range broadly corresponds with the spatial distribution of the known larval food plants. Outside the study region, *L. boeticus* occurs very widely from Western Europe, Africa and South-East Asia, through mainland New Guinea to the islands of the South Pacific. It also occurs throughout the Australian continent.

Habitat
The breeding habitat and larval food plants of *L. boeticus* are not well documented from the study region. Grund (1998) recorded the species breeding in the Kimberley (on *Crotalaria* spp.) at Broome and El Questro Wilderness Park, WA. At Mornington Wildlife Sanctuary, WA, it was recorded breeding in open grassland (E. P. Williams, pers. comm.). Adults are usually encountered in savannah woodland and riparian woodland, often in open disturbed areas, and presumably they breed in these habitats.

Larval food plants
Crotalaria cunninghamii, C. novae-hollandiae (Fabaceae). In Queensland, the larvae feed on a wide range of legumes (Braby 2000). Presumably, the number of species of food plants utilised is much larger than present records indicate.

Attendant ant
Froggattella sp. (Formicidae: Dolichoderinae). The larvae are usually attended by a few small black ants in a facultative myrmecophilous association (Grund 1998).

Seasonality
Adults have been recorded during most months of the year, but they are most abundant during the dry season (July–October), with a pronounced peak in abundance in July. They are rare or absent during the wet season (November–April) in most years. The breeding phenology and seasonal history of the immature stages are not well understood. In the Kimberley, Grund (1998) noted that the immature stages were recorded in October, but provided few details. The species is migratory (Smithers 1985; Braby 2000) and adults are capable of dispersing considerable distances. Presumably, *L. boeticus* colonises much of the study region—or at least the higher rainfall areas of the study region—on a seasonal basis; breeding is limited to the mid to late dry season, and it then vacates much of the region or contracts to the arid zone during the hot humid months. The few records during the wet season possibly represent vagrants or temporary local breeding populations in some years.

Breeding status
Lampides boeticus appears to be a regular immigrant in the study region, breeding temporarily during the dry season and then vacating the region or contracting to the drier inland areas before the onset of the wet.

Conservation status
LC.
Lampides boeticus

Pie Chart: Relative abundance (%)

Month: J F M A M J J A S O N D

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Spotted Grass-blue

Zizeeria karsandra (Moore, 1865)

Distribution

This species occurs very widely in the study region, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 500 mm mean annual rainfall). It has been recorded as far south as Broome and Mary River Pool, approximately 100 km southwest of Halls Creek, WA (Williams et al. 2006); Elliott, NT, and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998). It also occurs in the Davenport Ranges, NT (Pierce 2008), just outside the southern boundary of the study region. The geographic range corresponds well with the spatial distribution of its known and putative (*Glinus* spp.) larval food plants. The food plants also occur on the Tiwi Islands; thus, further surveys are required to determine whether *Z. karsandra* occurs on Bathurst and Melville islands, NT. Outside the study region, *Z. karsandra* occurs widely from northern Africa, northern Arabia and South-East Asia to the Torres Strait Islands, Qld, and central, north-eastern and eastern Australia.

Habitat

Zizeeria karsandra breeds in beach scrubland on sand dunes and sand above the high-tide mark in coastal areas, and in open woodland in the more inland areas, favouring open disturbed areas where the larval food plants grow as prostrate herbs (Braby 2011a). It also occurs in open sandy areas along riverbanks and dry river beds in the more inland areas, where the species undoubtedly breeds on alternative food plants (*Glinus* spp.).

Larval food plants

Tribulopis bicolor, *Tribulus cistoides* (*Zygophyllaceae*); probably *Glinus lotoides* and *G. oppositifolius* (*Molluginaceae*), which are two food plants in eastern Australia (Braby 2000). *Tribulus cistoides* is the main food plant in coastal areas (Braby 2011a).

Attendant ant

The larvae and pupae are not attended by ants.

Seasonality

Adults occur throughout the year, but they are generally more abundant during the wet season (December–April), although they may be locally abundant at other times such as the mid dry season. The immature stages have been recorded sporadically during both the wet and the dry seasons. The larval food plants have varying life history strategies: *Tribulus cistoides* is a short-lived perennial that is seasonally dependent on rainfall, whereas *Tribulopis bicolor* and *Glinus* spp. are annuals, although *G. lotoides* may also be a short-lived perennial. It is not clear how *Z. karsandra* survives the late dry season, when their food plants are frequently not available. Presumably, the species breeds continuously throughout the year by dispersing and tracking the local availability of their food plants over a very wide area.

Breeding status

This species is resident in the study region, but populations appear to be nomadic and are possibly temporary in many areas.

Conservation status

LC.
9. BLUES

Zizeeria karsandra

- Specimen ≈ 1970
- Observation ≈ 1970
- Literature ≈ 1970
- Specimen < 1970
- Literature < 1970
- Larval food plants
- Putative larval food plants

Zizeeria karsandra

- Species record
- Geographic range
- Phytoecological boundary
- ITRA bioregional boundary

Zizeeria karsandra (n = 140)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Common Grass-blue

Zizina otis (Fabricius, 1787)

Distribution

This species is represented in the study region by the subspecies *Z. otis labradus* (Godart, [1824]). It occurs very widely in the region, extending from moist coastal areas to drier inland areas of the semi-arid zone (< 400 mm mean annual rainfall), as well as the arid zone of central Australia beyond the southern boundary of the study region. It has been recorded as far south as 160 km north-west of Rabbit Flat, WA (Pierce 2008); 7 km north–north-east of Helen Springs Homestead, NT; and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998). Outside the study region, *Z. otis* occurs widely from India, Japan and South-East Asia, through mainland New Guinea and adjacent islands to New Caledonia, Vanuatu, Fiji, Samoa and New Zealand. It also occurs throughout the Australian continent.

Habitat

The natural breeding habitat of *Z. otis* has not been recorded in the study region, but adults occur in a very wide range of habitats in which they no doubt breed. They also occur in suburban parks and gardens, where they breed on an introduced larval food plant.

Larval food plants

Desmodium triflorum (Fabaceae). The native food plants have not been recorded in the study region, but elsewhere the food plants include a wide range of native and introduced low-spreading legumes (Braby 2000).

Attendant ant

Not recorded in the study region. Elsewhere, the larvae are usually attended by a few ants representing several genera in a facultative myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality

Adults occur throughout the year, but they are most abundant during the wet season and early dry season (January–June), with a peak in abundance in May, and scarce during the remainder of the year, particularly during the late dry season and ‘build-up’ (August–November). We have few data on the phenology of the immature stages. Presumably, *Z. otis* breeds continuously from at least the early wet season to the mid dry season and several generations are completed annually. However, it is not clear how the species survives the late dry season.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Zizina otis

Relative abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Black-spotted Grass-blue
Famegana alsulus (Herrich-Schäffer, 1869)

Larval food plants
Tephrosia sp., *Vigna lanceolata*, *V. radiata*, *V. vexillata* (Fabaceae); also *Macroptilium atropurpureum* (Fabaceae). The usual larval food plants are *Vigna* spp., but at Leichhardt Falls in the Gulf of Carpentaria, Qld, a female was observed ovipositing several eggs on the flower buds of a *Tephrosia* sp. growing as a small shrub in dry river sand. This species may prove to be *T. remotiflora*; adults have been observed attracted to the flowers of this species at nearby Boodjamulla/Lawn Hill National Park, Qld (Dunn 2017b).

Attendant ant
Not recorded in the study region. Elsewhere, the larvae are usually attended by a few ants representing several genera, in a facultative myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults occur throughout the year, but they are most abundant during the late wet season (March and April), when immense numbers of males may be observed puddling at damp sand near creeks. Their numbers diminish as the dry season progresses, and they are very scarce during the ‘build-up’ at the start of the wet season. However, in some areas, they may be locally abundant during the dry season depending on the availability of flower buds and flowers of their larval food plants. The immature stages (eggs or larvae) have been recorded frequently from March to May, when adults are most abundant, but also in September. The main larval food plants (*Vigna* spp.) are seasonal perennials that lose their aerial stems and leaves during the dry season; they regenerate from tuberous roots (i.e. facultative basal resprouters) depending on rainfall/moisture and post fire. Presumably, *F. alsulus* breeds continuously throughout much of the year and several generations are completed annually, but it is not clear how the species survives the late dry season, when the food plants are frequently not available.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Famegana alsulus

- **Specimen >1970**
- **Observation >1970**
- **Literature >1970**
- **Specimen <1970**
- **Literature <1970**
- **Larval food plants**

Relative abundance (%)

Month
- J F M A M J J A S O N D

Famegana alsulus (n = 418)

- **Egg**
- **Larva**
- **Pupa**
- **Adult**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Dainty Grass-blue

Zizula hylax (Fabricius, 1775)

Habitat
The breeding habitat of *Z. hylax* has not been recorded in the study region. Adults usually occur in pandanus swamps and swampy areas adjacent to spring-fed monsoon forest or within riparian woodland/forest where the putative larval food plant grows as an annual herb, but they have also been recorded in grassy areas and savannah woodland well away from water, where they probably breed on alternative food plants.

Larval food plants
Not recorded in the study region; probably *Hygrophila angustifolia* (Acanthaceae), which is a food plant in Queensland (Braby 2000).

Attendant ant
Not recorded in the study region. Elsewhere, the larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few small black ants (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults have been recorded during most months of the year. Our field observations, together with the limited number of monthly records available, suggest they are more abundant during the mid dry season (May–August), with a peak in abundance in July. The breeding phenology and seasonal history of the immature stages have not been recorded. Larvae are known to feed on the young fruits of the putative larval food plant, which germinates during the wet season and is available only during the late wet season and early dry season; it then withers and dies off in the mid to late dry season. Presumably, *Z. hylax* breeds from at least the mid wet season to the early dry season and one or more generations are completed annually. However, it is not clear how the species survives the late dry season and early wet season.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Zizula hylax

- **Specimen x1970**
- **Observation x1970**
- **Literature x1970**
- **Putative larval food plant**

Relative Abundance (%)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Orange-tipped Pea-blue
Everes lacturnus (Godart, [1824])

Habitat

The breeding habitat of *E. lacturnus* has not been recorded in the study region. Adults are usually found in riparian areas along permanent freshwater creeks or streams, where they typically occur in damp open areas or grassy swampy areas along the edge of evergreen monsoon vine forest or within mixed *Lophostemon–Melaleuca* woodland or in open forest adjacent to monsoon forest.

Larval food plants

Not recorded in the study region; probably *Desmodium heterocarpon* (Fabaceae), which is the food plant in eastern Queensland (Braby 2000).

Attendant ant

Not recorded in the study region. Elsewhere, the larvae and pupae are usually not attended by ants, but very occasionally the larvae are attended by a few small ants (Eastwood and Fraser 1999; Braby 2000).

Seasonality

Adults have been recorded during most months of the year, but they are most abundant during the late wet season (March and April) and scarce during the dry season. The breeding phenology and seasonal history of the immature stages have not been recorded. The putative larval food plant is a seasonal perennial herb that is facultatively deciduous, losing its leaves during the dry season when water-stressed and resprouting from rootstock during the wet season or post fire. It is not clear how *E. lacturnus* survives the dry season and early wet season, when the plant is frequently not available. Presumably, the species remains in larval diapause, similar to populations in eastern Queensland (Samson 1991).

Breeding status

This species is resident in the study region.

Conservation status

LC.
Everes lacturnus

- **Specimen ≥1970**
- **Observation ≥1970**
- **Literature ≥1970**
- **Specimen <1970**
- **Literature <1970**
- **Putative larval food plant**

![Map of Everes lacturnus distribution](image1)

Everes lacturnus

- **Species record**
- **Geographic range**
- **Phylogeographical boundary**
- **IBRA bioregional boundary**

![Map of Everes lacturnus distribution](image2)

Everes lacturnus (n = 63)

![Bar graph showing relative abundance](image3)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Spotted Pea-blue
Euchrysops cnejus (Fabricius, 1798)

Distribution
This species is represented in the study region by the subspecies _E. cnejus cnidus_ Waterhouse & Lyell, 1914. It occurs very widely in the Kimberley, Top End and western Gulf Country, extending from moist coastal areas to drier inland areas of the semi-arid zone (500 mm mean annual rainfall). It has been recorded as far inland as Halls Creek, WA (Grund and Hunt 2001); Daly Waters, NT (A. Allwood and T. Weir); and Boodjamulla/Lawn Hill National Park (Daniels and Edwards 1998) and Lake Moondarra (Dunn 2017d), Qld, as well as Corella River crossing 45 km west by south of Cloncurry, Qld, just outside the south-eastern corner of the study region. The geographic range is broadly similar to the spatial distribution of its larval food plants, although the food plants extend further inland to the arid zone. Outside the study region, _E. cnejus_ occurs widely from India and South-East Asia, through mainland New Guinea and adjacent islands and north-eastern and eastern Australia to the Bismarck Archipelago and Samoa.

Larval food plants
Vigna lanceolata, V. marina, V. radiata, V. vexillata (Fabaceae); also *Macroptilium atropurpureum, *M. lathyroides, *Vigna unguiculata* (Fabaceae).

Attendant ant
Not recorded in the study region. Elsewhere, the larvae are usually attended by a few ants representing several genera in a facultative myrmecophilous association (Eastwood and Fraser 1999; Braby 2000).

Seasonality
Adults occur throughout the year, but they are most abundant during the late wet season and early dry season (March–June), with a peak in abundance in April and May, and least abundant during the late dry season (September–November). The immature stages have been recorded sporadically from January to August. The larvae feed on the flower buds and young pods of the larval food plants. The native food plants (_Vigna_ spp.) are seasonal perennials that lose their aerial stems and leaves during the dry season; they regenerate from tuberous roots (i.e. facultative basal resprouters) depending on rainfall/moisture and post fire. Presumably, _E. cnejus_ breeds continuously from at least the mid wet season to the mid dry season and several generations are completed annually. However, it is not clear how the species survives the dry season, when its larval food plants are frequently not available.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Euchrysops cnejus

Month

Relative abundance (%)

Egg
Larva
Pupa
Adult

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Jewelled Grass-blue
Freya putli (Kollar, [1844])

Distribution
This species is represented in the study region by the subspecies *F. putli putli* (Kollar, [1844]). It occurs very widely in the Kimberley, Top End, Northern Deserts and western Gulf Country. It extends from moist coastal areas to the semi-arid zone (< 500 mm mean annual rainfall), where it has been recorded as far south as Derby (Warham 1957) and Halls Creek (Grund and Hunt 2001), WA; 7 km north–north-east of Helen Springs Homestead near Renner Springs, NT; and Boodjamulla/Lawn Hill National Park, Qld (Daniels and Edwards 1998). The geographic range broadly corresponds with the spatial distribution of its larval food plants, although the food plants extend further inland to the arid zone. The food plants also occur on the Tiwi Islands; thus, further surveys are required to determine whether *F. putli* is present on Bathurst and Melville islands, NT. Outside the study region, *F. putli* occurs widely from Nepal, India and South-East Asia, through mainland New Guinea to north-eastern and eastern Australia.

Habitat
Freya putli breeds in savannah woodland, favouring open disturbed areas where the main larval food plant grows as an annual herb (Braby 2015e).

Larval food plants
Flemingia lineata, *Indigofera linifolia* (Fabaceae). The main food plant appears to be *I. linifolia* (Braby 2015e).

Attendant ant
Iridomyrmex sp. (1 anceps group), *Ochetellus* sp. near *glaber* (Formicidae: Dolichoderinae), *Polyrhachis schenckii* (Formicidae: Formicinae). The larvae are usually attended by a few ants representing several genera in a facultative myrmecophilous association (Meyer 1996a; Braby 2015e).

Seasonality
Adults have been recorded during most months of the year, but they are most abundant during the late wet season and early dry season (March–May). They are generally absent or very scarce during the late dry season (August–November). We have recorded the immature stages in March and April, when adults are abundant, but undoubtedly they occur throughout the wet season and early dry season. The main larval food plant is a seasonal herb with an annual lifespan; the plants die off during the dry season and then reproduce from seed after rainfall. Presumably, *F. putli* breeds continuously from at least the mid wet season to the early dry season and several generations are completed annually. However, it is not clear how the species survives the late dry season, when the main food plant is not available; it is possible the immature stages enter diapause or it switches to an alternative food plant, such as *Flemingia lineata*, which is a small perennial shrub that maintains its foliage throughout the year.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Freyeria putli

- Specimen ≥1970
- Specimen ≤1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Freyeria putli

- Specimen record
- Geographic range
- Phytophagous boundary
- IBRA biogeographic boundary

Freyeria putli (n = 156)

![Graph showing relative abundance by month](image)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Day-flying moths
(Sesiidae, Castniidae, Zygaenidae, Immidae, Geometridae, Uraniidae, Erebidae and Noctuidae)
Clearwing Moth

Pseudosesia oberthuri (Le Cerf, 1916)

Distribution
This species is endemic to the study region. It occurs in the north of the Northern Territory, where it is restricted to the higher rainfall areas of the north-western corner of the Top End (> 1,300 mm mean annual rainfall). It extends from the Tiwi Islands (Melville Island) (G. F. Hill) south to Mt Burrell on Tipperary Station (Braby 2011a) and east to Kakadu National Park (Nourlangie Rock) (A. Kallies). The larval food plants are considerably more widespread than the known geographic range, occurring in the Kimberley and throughout the Top End and coastal islands of the western Gulf Country. Further surveys are thus required to determine whether *P. oberthuri* occurs in these areas and is more widespread than present records indicate. Males of the species are usually detected by attracting them to artificial pheromone lures (Kallies 2001).

Habitat

Pseudosesia oberthuri breeds along the edges of semi-deciduous monsoon vine thicket and in savannah woodland where the larval food plants grow either as vines (*Ampelocissus acetosa*) or as shrubs (*A. frutescens*) (Braby 2011a).

Larval food plants

Ampelocissus acetosa, A. frutescens (Vitaceae). The main food plant appears to be *A. acetosa* (Kallies 2001; Braby 2011a).

Seasonality

Adults are seasonal, occurring only during the wet season and early dry season (January–May), but there are too few records (*n* = 10) to assess temporal changes in abundance. The life cycle is incompletely known. The immature stages (larvae or pupae) have been recorded sporadically from January to May. Near Darwin, NT, large numbers of fully grown larvae and pupae have been found in March (A. Kallies, pers. comm.). The larvae feed in the woody stems of their food plants (*Ampelocissus* spp.), which are short-lived seasonal perennial vines or shrubs. The larvae cause significant swelling of the stems and sometimes multiple larvae (> 10) can be found in a single large gall. During the dry season, the food plants senesce and remain dormant as underground tubers; they then resprout and regenerate during the ‘build-up’ following the pre-monsoon storms. Presumably, only a single generation is completed annually, but it is not clear whether the species survives the dry season as eggs or early instar larvae.

Breeding status

This species is resident in the study region.

Conservation status

LC. The species *P. oberthuri* is a narrow-range endemic (geographic range = 29,990 sq km) and occurs in several conservation reserves, including East Point Reserve, Casuarina Coastal Reserve and Kakadu National Park. Despite its restricted occurrence, there are no known threats facing the taxon.
Pseudosesia oberthuri

Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Larval food plants

Geographic range
- Phytogeographical boundary
- IBRA bioregional boundary

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Northern White-spotted Sun-moth
Synemon phaeoptila Turner, 1906

Distribution
This species occurs in the western half of the Top End of the study region. It extends from moist coastal areas of high rainfall (> 1,600 mm mean annual rainfall) to drier inland areas, reaching its southernmost limit on the Pinkerton Range, NT (Braby 2011a). It generally occurs in higher rainfall areas (> 800 mm) than *Synemon wulwulam*, although the ranges of the two species overlap in the area between Adelaide River, Katherine and the Victoria River District, NT. The geographic range corresponds well with the spatial distribution of its larval food plant, although the food plant also occurs in the Kimberley and on the Tiwi Islands, NT. Further field surveys are thus required to determine whether *S. phaeoptila* occurs in these areas. Outside the study region, *S. phaeoptila* occurs in northern Queensland.

Habitat
Synemon phaeoptila breeds in savannah woodland, favouring open grassy areas where the larval food plant grows as a perennial grass (Braby 2011a).

Larval food plant
Chrysopogon latifolius (Poaceae).

Seasonality
Adults are seasonal, occurring only during the wet season (November–February), before the flight season of *Synemon wulwulam*. They are most abundant during December and January following the first substantial rainfall events, when the larval food plants resprout or regenerate after fire. In some locations or seasons they may also be common in February, depending on the timing of the monsoon rains. The immature stages (eggs and fresh pupal shells) have been recorded in February. The larvae are believed to feed underground on the thick rhizome of the food plant. Presumably, one generation is completed annually and the larvae develop during the late wet season and dry season.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Kimberley Sun-moth

Synemon sp. ‘Kimberley’

Distribution

This undescribed species is endemic to the northern Kimberley, where it occurs in the higher rainfall areas (> 1,000 mm mean annual rainfall), its presence in the region first detected in 2000 by G. Swann. It is currently known from only two coastal locations 150 km apart: on the mainland east of Borda Island (Williams et al. 2016) and Bertram Cove, south of Cape Bernier (G. Swann), WA. Further field surveys are required to determine whether *Synemon* sp. ‘Kimberley’ occurs elsewhere in the Kimberley, particularly in the more inland areas.

This species was provisionally placed under *Synemon phaeoptila* by Williams et al. (2016: 146) based on limited material (one female and one male), but with the caveat that ‘[i]t is possible that this is an undescribed species … More specimens, and better quality material from the Kimberley is required before a thorough taxonomic assessment can be made’. Examination and comparison of additional material (14 males, two females) recently collected by J. E. and A. Koeyers indicate that it is indeed a distinct species. *Synemon* sp. ‘Kimberley’ differs from *S. phaeoptila* in several characters—namely, the adults are substantially smaller in size; the wings are narrower and a different shape, with the forewing obovate and apex more rounded, and the hindwing termen straighter and less rounded; the pattern on the upperside of the forewing is less complex, being uniformly grey with black veins, the white cell spot consists of a small delicate dull white rounded spot (rather than a larger, brighter white oblique bar enclosed by a variable black patch in *S. phaeoptila*), and the broad iridescent silver curved streak along the cubital vein is usually absent or poorly developed; and the prominent orange-brown terminal band on the upperside of the hindwing in males is absent or, when present, reduced to a series of indistinct spots separated by dark veins. In addition, on the underside of the forewing, females have four distinct black elongate subapical spots, which are absent in *S. phaeoptila*, and males have the ground colour predominantly dark brown, with the orange-brown area substantially reduced to a narrow margin near the termen, whereas in *S. phaeoptila* only the inner half is dark brown, which contrasts against the outer portion, which is bright orange-brown.

Habitat

The breeding habitat of *Synemon* sp. ‘Kimberley’ has not been recorded. Adults have been collected in coastal *Acacia–Grevillea* low open woodland, where the putative larval food plant grows as a dominant perennial grass on sandstone (Williams et al. 2016).

Larval food plant

Not recorded in the study region; possibly *Chrysopogon fallax* (Poaceae) (Williams et al. 2016).

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded only in February, but we have too few records (n = 3) to assess any seasonal changes in abundance. It is likely the flight period is limited to the wet season, similar to that of *S. phaeoptila*. Presumably, one generation is completed annually and the larvae develop during the late wet season and dry season.
Breeding status
This species is resident in the study region.

Conservation status
DD. The species *Synemon* sp. ‘Kimberley’ is currently known from only two locations in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 1,400 sq km). Although both sites are located within conservation reserves (Balanggarra and Uunguu IPAs), further investigations are required to clarify the ecological requirements, critical habitat, distribution and conservation status of this species.
Golden-flash Sun-moth

Synemon wulwulam Angel, 1951

Distribution

This species occurs widely in the study region, extending from the Kimberley through the Top End and Northern Deserts to the western Gulf Country. In the Kimberley, it has been recorded from Derby, the Mitchell Plateau, Kununurra and the Lake Argyle area (Williams et al. 2016), WA. In the Northern Territory, it extends from the higher rainfall areas of the Top End, reaching its northernmost limit at Adelaide River (Angel 1951), to drier inland areas of the semi-arid zone (<400 mm mean annual rainfall), where it occurs as far south as the Barkly Tableland (Barkly Homestead Roadhouse and 22 km east-north-east of Soudan Homestead) (E. D. Edwards and M. Mathews). It generally occurs in lower rainfall areas (<1,400 mm) than *Synemon phaeoptila*, although the ranges of the two species overlap in the area between Adelaide River, Katherine and the Victoria River District, NT. The larval food plants are more widespread than the known geographic range; thus, further field surveys are required to determine whether *S. wulwulam* is present in the southern Kimberley and Northern Deserts (Tanami Desert). Outside the study region, *S. wulwulam* occurs in western Queensland, reaching its easternmost limit at Cloncurry just outside the boundary of the study region.

Habitat

Synemon wulwulam breeds in savannah woodland, favouring open grassy areas, where the larval food plants grow as perennial grasses (Braby 2015e; Williams et al. 2016).

Larval food plants

Chrysopogon setifolius, Sorghum plumosum (Poaceae).

Seasonality

Adults are seasonal, occurring only during the early dry season (March–June), after the flight season of *Synemon phaeoptila*. They are most abundant in May. The immature stages (eggs and a fresh pupal shell) have also been recorded in May. The larvae are believed to feed underground on the thick rhizome of the food plants. Presumably, one generation is completed annually and the larvae develop during the late dry season and wet season.

Breeding status

This species is resident in the study region.

Conservation status

LC.
10. DAY-FLYING MOTHs

Synemon wulwulam

- Specimen ≥1970
- Observation ≥1970
- Literature ≥1970
- Specimen <1970
- Literature <1970
- Larval food plants

Synemon wulwulam

- Species record
- Geographic range
- Phyogeographical boundary
- IBRA bioregional boundary

Synemon wulwulam (n = 30)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
White-veined Sun-moth
Synemon sp. ‘Roper River’

Distribution

This undescribed species is endemic to the study region. It is restricted mainly to the western Gulf Country, where it occurs in the lower rainfall areas (< 800 mm mean annual rainfall). There is also an isolated record further west in the southern Kimberley (16 km south-east of Halls Creek, WA) based on a historical specimen collected in 1944 (in WADA) (Williams et al. 2016). It extends as far south as the Barkly Tableland (Ranken Road 1 km north of the Barkly Highway, NT) in the semi-arid zone (< 400 mm). Its northernmost limit is Roper River (N. B. Tindale) and the easternmost limit is 15 km west of Musselbrook Resource Centre (G. Daniels and M. A. Schneider), NT. The larval food plants are considerably more widespread than the known geographic range; thus, further field surveys are required to determine whether _Synemon_ sp. ‘Roper River’ is more widespread in the southern Kimberley and Northern Deserts, particularly in the intervening area between Halls Creek and the NT–Qld border.

Habitat

Synemon sp. ‘Roper River’ breeds in savannah woodland, favouring flat open grassy areas where the larval food plants grow as perennial grasses (Braby 2011a; Williams et al. 2016). Although the geographic range falls within that of _Synemon wulwulam_ and although it has a similar flight period to that species, the two species are rarely found together.

Larval food plants

Chrysopogon fallax, *C. pallidus* (Poaceae).

Seasonality

Adults are seasonal, occurring only in the early dry season (May). The immature stages (fresh pupal shells) have also been recorded in May. The larvae are believed to feed underground on the thick rhizome of the food plants. Presumably, one generation is completed annually and the larvae develop during the late dry season and wet season.
Breeding status
This species is resident in the study region.

Conservation status
LC. *Synemon* sp. ‘Roper River’ appears to be poorly represented in conservation reserves, and is currently known only from Limmen National Park.
Northern Forester Moth

Pollanisus sp. 7

Habitat
The breeding habitat of *Pollanisus* sp. 7 has not been recorded. The putative larval food plant grows as a pioneer shrub or small tree up to 6 m high along the edges of wet and dry monsoon forests.

Larval food plants
Not recorded in the study region; possibly *Pipturus argenteus* (Urticaceae), which is a food plant for the closely related *Pollanisus eumetopus* Turner, 1926 in north-eastern Queensland (Tarmann 2004; Mollet and Tarmann 2010).

Seasonality
The seasonal abundance and breeding phenology of this species are not known.

Breeding status
This species is assumed to be resident in the study region.

Conservation status
DD. *Pollanisus* sp. 7 has not been recorded for more than 110 years since it was first discovered in 1908. Targeted field surveys to clarify the distribution and status of this species should be a high priority.
Yellow Forester Moth

Hestiochora xanthocoma Meyrick, 1886

Habitat

The breeding habitat of *H. xanthocoma* has not been recorded in the study region. Most locations at which adults have been collected comprise woodland on sandstone or sandy soil. At Wongalara Wildlife Sanctuary, NT, several adults were observed on a hill supporting low open woodland with a spinifex understorey on sandstone; they were feeding locally on flowers growing in the ground layer (Braby 2012a).

Larval food plants

Not recorded in the study region.

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded mainly in the late wet season and early dry season (March–June), as well as in the late dry season (October), but there are too few records (n = 10) to assess any seasonal changes in abundance. The seasonal history of the immature stages is not known.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Orange-banded Velvet Moth

Birthana cleis (R. Felder & Rogenhofer, 1875)

Distribution
This species has a disjunct distribution, occurring in the northern Kimberley and more widely in the Top End, where it occurs in the higher rainfall areas (> 900 mm mean annual rainfall). The southern limits of its range include Mitchell Falls National Park (Mertens Creek), WA (E. P. Williams); and Fish River Station (6 km south-east of Fish River homestead) (Braby and Kessner 2012) and Wongalara Wildlife Sanctuary (Wongalara homestead) (Braby 2012a), NT. The geographic range falls within the spatial distribution of its larval food plants, which occur very widely throughout the study region. Further surveys are thus required to determine more precisely the southern limits of *B. cleis* and whether it is present on the Tiwi Islands and Groote Eylandt, NT. Outside the study region, *B. cleis* occurs in Ambon and north-eastern Australia.

Habitat
Birthana cleis breeds in savannah woodland and riparian open forest where the larval food plants grow as mistletoes (parasitic shrubs) on various trees, including *Eucalyptus, Planchonia, Alstonia, Erythrophleum* and *Grevillea* (Anderson and Braby 2009; Braby 2011a, 2015c). It also breeds in suburban parks and gardens.

Larval food plants
Amyema sanguinea, Decaisnina signata, Dendrophthoe glabrescens, Dendrophthoe odontocalyx (Loranthaceae).

Seasonality
Adults occur during most months of the year. In general, adults tend to be more numerous during the wet season (January and March–April), but they may be locally common at other times of the year depending on the synchronous development of the immature stages, of which the larvae feed gregariously on the foliage of their mistletoe food plants. The immature stages have been recorded during all months of the year, indicating that breeding occurs continuously and several generations are completed annually.

Breeding status
This species is resident in the study region.

Conservation status
LC.
10. DAY-FLYING MOTHS

Birthana cleis

- Specimen ≥ 1970
- Observation ≥ 1970
- Specimen < 1970
- Larval food plants

Birthana cleis

- Species record
- Geographic range
- Phylogeographical boundary
- IBRA bioregional boundary

Birthana cleis (n = 40)

<table>
<thead>
<tr>
<th>Month</th>
<th>Rel. Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
</tr>
<tr>
<td>J</td>
<td>15</td>
</tr>
<tr>
<td>J</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>20</td>
</tr>
<tr>
<td>O</td>
<td>15</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Egg</th>
<th>Larva</th>
<th>Pupa</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flame Geometer Moth

Ctimene sp. ‘Top End’

Distribution

This undescribed species is endemic to the study region. It is restricted to the north of the Northern Territory, where it occurs in the higher rainfall areas (> 1,200 mm mean annual rainfall) of the Top End.

Habitat

The breeding habitat of *Ctimene* sp. ‘Top End’ has not been recorded in the study region. Adults have been recorded only in semi-deciduous monsoon vine thicket and riparian evergreen monsoon vine forest in which they no doubt breed. The species also occurs in the suburbs and rural areas of Darwin, NT, where suitable patches of monsoon forest habitat persists.

Larval food plants

Not recorded in the study region.

Seasonality

The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded during most months of the year, but there are too few records (n = 14) to assess any seasonal changes in abundance. In general, adults tend to be more numerous during the mid dry season (July–September). The seasonal history of the immature stages is not known.

Breeding status

This species is resident in the study region.

Conservation status

LC. Although the species *Ctimene* sp. ‘Top End’ has a restricted range, there are no known threats facing the taxon.
10. DAY-FLYING MOTHS

Ctimene sp. 'Top End'

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Six O’clock Moth

Dysphania numana (Cramer, 1779)

Habitat

Dysphania numana breeds in a variety of wet and dry monsoon forests where the larval food plant grows as a small to medium-sized evergreen tree. Typical habitats include semi-deciduous monsoon vine thicket on coastal lateritic cliffs and in drier inland rocky sandstone escarpments and gullies, evergreen monsoon vine forest associated with permanent freshwater streams and perennial springs, mixed riparian monsoon forest–woodland along creeks and mixed tall paperbark swampland with rainforest elements in the understorey. Adults regularly disperse into savannah woodland, but they rarely breed in this habitat.

Larval food plant

Carrlia brachiata (Rhizophoraceae).

Seasonality

Adults occur throughout the year. They appear to show little seasonal variation in abundance, although they tend to be more numerous during the early to mid dry season (May–August), but they may also be common during the late wet season. The immature stages have been recorded during most months of the year except during the ‘build-up’ (October and November); they may be numerous during the mid to late wet season and early dry season (January–June), when the food plant produces new leaf growth. The species breeds continuously throughout the year and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC.
10. DAY-FLYING MOTHs

Dysphania numana

- **Specimen i:1970**
- **Observation i:1970**
- **Literature i:1970**
- **Specimen =1970**
- **Larval food plant**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Relative abundance (%) vs Month

Dysphania numana (n = 105)
Distribution
This species is known only from the Top End of the study region. It has been recorded at two locations in eastern Arnhem Land, NT: Elcho Island (Galiwinku) in the Wessel Islands, based on several observations and photographs during the ‘build-up’ between 1971 and 1976 by I. Morris; and at Nhulunbuy (Drimmie Head) on Gove Peninsula, based on a specimen collected in October 2006 by L. Wilson (Braby 2014a). Outside the study region, *A. metaurus* occurs in northern and north-eastern Queensland.

Habitat
The breeding habitat of *A. metaurus* has not been recorded in the study region.

Larval food plants
Not recorded in the study region; possibly *Endospermum myrmecophilum* (Euphorbiaceae). In north-eastern Queensland, the food plants include *Omphalea* spp. and *Endospermum* spp., all of which are tropical rainforest vines or tall trees (Coleman and Monteith 1981; Monteith and Wood 1987; Harrison 2010; Moss 2010). None of these species occurs on Gove Peninsula or the Wessel Islands, NT, and only one (*E. myrmecophilum*) occurs in the Northern Territory, where it is restricted to the Tiwi Islands and north-western corner of the Top End.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. Adults have been recorded only during the late dry season (October and November). In Queensland, the species is well known for its overwintering aggregations and migratory flights (Smithers and Peters 1977; Coleman and Monteith 1981).

Breeding status
Alcides metaurus does not appear to have become permanently established in the study region. It is likely the records from north-eastern Arnhem Land represent vagrants that dispersed from northern Queensland across the Gulf of Carpentaria to the Northern Territory associated with large-scale migration of adults following the breakup of their winter dry season aggregations.

Conservation status
NA.
10. DAY-FLYING MOTHS

Alcides metaurus

- Specimen in 1970
- Observation in 1970

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Photo: NE Arnhem Land, NT, M.F. Braby
Scarlet Tiger Moth
Euchromia creusa (Linnaeus, 1758)

Habitat
The breeding habitat of _E. creusa_ has not been recorded in the study region. The single individual encountered was perched on a rock in sandstone country within the Arnhem Land Plateau.

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not well understood. The single individual was recorded during the early wet season (December). Presumably, adults are highly seasonal and local in occurrence.

Breeding status
Euchromia creusa is assumed to be resident in the study region.

Conservation status
DD. The species _E. creusa_ is currently known from only one location in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 700 sq km). Although it has been recorded from a conservation reserve (Warddeken IPA), further investigations are required to clarify the ecological requirements, critical habitat and distribution of this species.

Distribution
This species is known from only a single record in the Top End of the study region, where I. Morris photographed a specimen near Oenpelli, NT, in December 1993 (Braby 2014a). Outside the study region, _E. creusa_ occurs from Ambon and the Kai Islands, through mainland New Guinea and north-eastern Australia to New Caledonia, Vanuatu and Fiji.

Plate 199 Oenpelli, NT
Photo: Ian Morris

Table of Phenology

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Galaxy Day-moth
Genus 1 sp. ‘Sandstone’

Habitat
The breeding habitat of Genus 1 sp. ‘Sandstone’ has not been recorded. All specimens have been collected in eucalypt heathy woodland associated with sandstone breakaways, escarpments and rocky outcrops, in which they no doubt breed.

Larval food plants
Not recorded in the study region.

Seasonality
Adults are seasonal, occurring mainly during the warmer months of high humidity and high temperatures (October–May), with a peak in abundance during the early wet season (November–January), depending on the timing of the pre-monsoon storms. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible there is only a single generation annually, followed by a partial second generation in the late wet season. Presumably, the species survives the dry season in pupal diapause.

Breeding status
This species is resident in the study region.

Conservation status
LC.

Distribution
This undescribed species, which has not yet been assigned to a genus according to material curated in the ANIC, has a very wide but sporadic distribution within the study region. It occurs in both high and low rainfall areas (600–1,500 mm mean annual rainfall), extending from moist coastal areas to the semi-arid zone. It has been recorded as far south-west as Broome, WA (M. S. Moulds); as far north as the Arnhem Land Plateau, NT (15 km south-west by south of Nimbuwah Rock) (E. D. Edwards and M. S. Upton); and as far south-east as Boodjamulla/Lawn Hill National Park, Qld (Amphitheatre Springs 27 km north of Musselbrook Camp) (E. D. Edwards). Further field surveys are required to determine whether Genus 1 sp. ‘Sandstone’ is more widely distributed than available records indicate, particularly in the Kimberley and the Limmen Bight area in the Gulf of Carpentaria. Outside the study region, Genus 1 sp. ‘Sandstone’ occurs in northern Queensland.
Genus 1 sp. 'Sandstone'

- **Species recorded**
- Geographic range
- Phylogeographical boundary
- IBRA bioregional boundary

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Pale Banded Day-moth
Leucogonia cosmopis (Lower, 1897)

Distribution
This species occurs in the northern and eastern Kimberley and western half of the Top End of the study region. It occurs mainly in higher rainfall areas, although it has been recorded in drier areas (c. 800 mm mean annual rainfall) at Keep River National Park, NT (Cockatoo Creek) (G. Cocking, Y. N. Su and A. Zwick). Further field surveys are required to determine whether *L. cosmopis* occurs in the eastern half of the Top End. Outside the study region, *L. cosmopis* occurs in northern Queensland.

Habitat
The breeding habitat of *L. cosmopis* has not been recorded in the study region. Adults have been collected mostly at night by light traps set in savannah woodland and semi-deciduous monsoon vine thicket.

Larval food plants
Not recorded in the study region.

Seasonality
Adults are seasonal, occurring mainly during the wet season (November–March), but there are too few records (n = 19) to assess temporal changes in abundance. In general, adults tend to be more numerous during the early wet season (December and January). The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible there is only a single generation annually, followed by a partial second generation. Presumably, the species survives the dry season in pupal diapause.

Breeding status
This species is resident in the study region.

Conservation status
LC.
10. DAY-FLYING MOTHS

![Map of Leucogonia cosmopis]

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Laced Day-moth
Ipanica cornigera (Butler, 1886)

Distribution
This species occurs in the eastern Kimberley, the Top End, Northern Deserts and western Gulf Country of the study region. It extends very widely from moist coastal areas to drier inland areas of the semi-arid zone (< 400 mm mean annual rainfall), where it has been recorded as far south as Three Ways Roadhouse 25 km north of Tennant Creek, NT (M. S. Upton). It also occurs in the arid zone of central Australia beyond the southern boundary of the study region. Further field surveys are required to determine whether *I. cornigera* occurs more widely in the Kimberley, eastern Arnhem Land and western Queensland in the Gulf Country. Outside the study region, *I. cornigera* occurs from Indonesia, through mainland New Guinea to central, north-eastern and eastern Australia.

Habitat
The breeding habitat of *I. cornigera* has not been recorded in the study region. Adults have been collected mostly at night by light traps set in savannah woodland and semi-deciduous monsoon vine thicket, often in disturbed areas.

Larval food plants
Not recorded in the study region.

Seasonality
Adults are seasonal, occurring during the late dry season and wet season (August–April), but they are most abundant during the mid wet season (January and February) following the first monsoon rains. The breeding phenology and seasonal history of the immature stages have not been recorded, but it is possible there are only one or two generations annually. Presumably, the species survives the dry season in pupal diapause.

Breeding status
This species is resident in the study region.

Conservation status
LC.
10. DAY-FLYING MOTHS

Ipanica cornigera

Ipanica cornigera

Ipanica cornigera (n = 43)

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Orange-banded Day-moth

Periopta diversa (Walker, [1865])

Distribution
This species occurs in the northern and eastern Kimberley, the Top End, Northern Deserts and western Gulf Country of the study region. It extends widely from moist coastal areas to drier inland areas of the semi-arid zone (< 500 mm mean annual rainfall), where it has been recorded as far south as the Barkly Tableland, NT (c. 140 km north of Barkly Homestead Roadhouse) (M. S. Moulds). The geographic range falls within the spatial distribution of the known and putative larval food plants (*Spermacoce* spp.), which occur very widely throughout the study region. Further field surveys are thus required to determine whether *P. diversa* occurs more widely in the southern Kimberley, the eastern half of the Top End and western Queensland in the Gulf Country. Outside the study region, *P. diversa* occurs in north-eastern Queensland.

Habitat
Periopta diversa breeds in grassland and open woodland, favouring open disturbed areas of bare ground where the larval food plants grow as pioneer annual herbs (Braby 2011a, 2015e).

Larval food plants
Spermacoce phalloides (Rubiaceae); also *Spermacoce articulare*, *Oldenlandia corymbosa* (Rubiaceae); probably other *Spermacoce* spp.

Seasonality
Adults are seasonal, occurring only during the wet season (November–April), with a peak in abundance in December and January. The start of the flight season is triggered by the first substantial pre-monsoon storms, but the timing of adult emergence varies from year to year, depending on when the wet season commences. The immature stages (eggs or larvae) have been recorded only from December to February. The larvae feed on the foliage of their food plants, which are short-lived annuals, and it is likely only one or two generations are completed during the flight season, depending on the duration of the wet season. Presumably, the species, like *Periopta ardescens* and other agaristines, survives the dry season in pupal diapause.

Breeding status
This species is resident in the study region.

Conservation status
LC.
10. DAY-FLYING MOTHs

Periopta diversa

- Specimen ≥1970
- Observation ≥1970
- Specimen <1970
- Larval food plants

Relative Abundance (%)

- *Periopta diversa* (n = 42)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Chestnut Day-moth
Periopta ardescens (Butler, 1884)

 Distribution
This species occurs in the northern and eastern Kimberley and the western half of the Top End of the study region. It occurs mainly in the higher rainfall areas, although it has been recorded in drier inland areas (c. 800 mm mean annual rainfall), where it has been collected as far south as Kununurra, WA (M. S. Moulds and B. J. Moulds); and 11 km south-south-east of Timber Creek, NT. The geographic range falls within the spatial distribution of its larval food plants, which occur more widely in the southern Kimberley, Tiwi Islands, eastern half of the Top End, Groote Eylandt and coastal islands of the western Gulf Country. Further field surveys are thus required to determine whether *P. ardescens* occurs in these areas. Outside the study region, *P. ardescens* occurs in north-eastern Queensland.

 Habitat
Periopta ardescens breeds along the edges of semi-deciduous monsoon vine thicket and in savannah woodland where the larval food plants grow either as vines (*Ampelocissus acetosa*) or as shrubs (*A. frutescens*) (Braby 2011a).

 Larval food plants
Ampelocissus acetosa, A. frutescens (Vitaceae).

 Seasonality
Adults are seasonal, occurring only during the early to mid wet season (October–February), with a peak in abundance in December. The immature stages (eggs or larvae) occur mainly in November and December. The larvae feed on the new soft leaf growth of the food plants, which regenerate from underground tubers during the ‘build-up’ following the pre-monsoon storms and/or an increase in humidity. The food plants are short-lived seasonal perennial vines or shrubs and they senesce towards the end of the wet season and early dry season. The duration of the pupal stage is variable and there is probably only a single generation annually. The species survives the dry season in the pupal stage, which may remain in diapause for one to two years (Braby 2011a).

 Breeding status
This species is resident in the study region.

 Conservation status
LC.
10. DAY-FLYING MOTHS

Periopta ardescens

Map of Distribution and Relative Abundance

- **Specimen ≥1970**
- **Observation ≥1970**
- **Specimen <1970**
- **Larval food plants**

Graph of Relative Abundance (%):

- **Month:** J, F, M, A, M, J, J, A, S, O, N, D
- **Relative abundance (%)**

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Pearl Day-moth
Radinocera vagata (Walker, 1865)

Distribution
This species occurs in the northern and eastern Kimberley, the Top End, Northern Deserts and western Gulf Country of the study region. It extends from moist coastal areas to drier inland areas of the semi-arid zone (c. 500 mm mean annual rainfall), where it has been recorded as far south as Elliott, NT (I. Archibald). The geographic range falls within the spatial distribution of its larval food plants. The food plants, however, occur more widely in the southern Kimberley, Tiwi Islands, eastern half of the Top End, Groote Eylandt and western Queensland in the Gulf Country; thus, further field surveys are required to determine whether *R. vagata* occurs in these areas. Outside the study region, *R. vagata* occurs from the Lesser Sunda Islands, through mainland New Guinea to north-eastern Queensland.

Habitat
Radinocera vagata breeds mainly in savannah woodland and coastal paperbark woodland or swampland where the larval food plants grow either as vines (*Ampelocissus acetosa*, *Cayratia* spp.) or as shrubs (*A. frutescens*) (Braby 2011a, 2015e). It also breeds along the edges of coastal semi-deciduous monsoon vine thicket.

Larval food plants
Ampelocissus acetosa, *A. frutescens*, *Cayratia trifolia*, *C. maritima* (Vitaceae).

Seasonality
Adults are seasonal, occurring only during the ‘build-up’ and wet season (October–April), but they are most abundant in November and December following the pre-monsoon storms. The immature stages (larvae) have been recorded from October to March, but they are more prevalent earlier in the wet season (November–January), depending on the timing of rainfall. The larvae feed on the new soft leaf growth of the food plants, which regenerate from underground tubers during the ‘build-up’ following the pre-monsoon storms and/or an increase in humidity. The food plants are short-lived seasonal perennial vines or shrubs and they senesce towards the end of the wet season and early dry season. The duration of the pupal stage is variable and there is probably only a single generation annually, followed by a partial second generation in the late wet season. The species survives the dry season in the pupal stage, which may remain in diapause for up to 10 months.

Breeding status
This species is resident in the study region.

Conservation status
LC.
Radinocera vagata

Relative abundance (%)

Month

10. DAY-FLYING MOTHS
Boulder Day-moth

Radinocera sp. ‘Sandstone’

Distribution
This undescribed species is endemic to the study region, its presence detected only as recently as 2009 (Braby 2015c). It has a disjunct distribution and is known from only two locations: Jack Creek Bay, WA, in the northern Kimberley, where a single female was collected in 2016 (J. E. and A. Koeyers); and Kakadu National Park, NT (Nourlangie Rock) (Braby 2015c). Although the larval food plant is considerably more widespread in the study region, *Radinocera* sp. ‘Sandstone’ is confined to areas where the plant grows on sandstone in the higher rainfall areas (> 900 mm mean annual rainfall). Further field surveys are thus required to determine whether it occurs elsewhere in the Kimberley.

Habitat
Radinocera sp. ‘Sandstone’ breeds in sandstone foot-slope boulders at the base of escarpments where the larval food plant grows as a vine (Braby 2015c).

Larval food plant
Ampelocissus acetosa (Vitaceae).

Seasonality
Adults are seasonal, occurring only during the ‘build-up’ and early wet season (October–January), but there are too few records (n = 9) to assess temporal changes in abundance. In general, adults tend to be more prevalent in November and December, depending on the timing of the pre-monsoon storms. The immature stages (eggs or larvae) have been recorded only in November and December. The larvae feed on the new soft leaf growth of the food plant, which regenerates from an underground tuber during the ‘build-up’ following the pre-monsoon storms and/or an increase in humidity. The food plant is a short-lived seasonal perennial vine and it senesces towards the end of the wet season and early dry season. The duration of the pupal stage is variable and there is probably only a single generation annually, followed by a partial second generation in the mid wet season. The species survives the dry season in the pupal stage, which may remain in diapause for up to 12 months.

Breeding status
This species is resident in the study region.

Conservation status
LC. Despite the wide geographical range of the species, available data suggest *Radinocera* sp. ‘Sandstone’ has a disjunct distribution with a limited AOO. The two known locations both occur in conservation reserves: Uunguu IPA and Kakadu National Park. Despite its restricted occurrence, there are no known threats facing the taxon.
10. DAY-FLYING MOTHs

Radinocera sp. ‘Sandstone’

- Specimen ≥1970
- Observation ≥1970
- Larval food plant

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Photo: Nourlangie Rock, Kakadu National Park, NT, M.F. Braby
Speckled Day-moth

Idalima metasticta Hampson, 1910

Distribution

This species is endemic to the study region. It is restricted to the Top End, where it occurs mainly in areas that receive more than 800 mm mean annual rainfall. Its southernmost limits include Mataranka Homestead and Birdum near Larrimah, NT. The geographic range corresponds well with the spatial distribution of its larval food plants, indicating that *I. metasticta* has been well sampled in the region.

Habitat

Idalima metasticta breeds in savannah woodland where the larval food plant (*Hibbertia dilatata*) grows as a low perennial shrub on lateritic outcrops and rocky hill slopes. It also breeds in eucalypt heathy woodland where an alternative food plant (*H. juncea*) grows as a low perennial shrub on white coastal sand and relatively flat sandy terrain between sandstone outcrops (Braby 2015e).

Larval food plants

Hibbertia dilatata, H. juncea (Dilleniaceae).

Seasonality

Adults occur during most months of the year, but they are most abundant during the early wet season (November and December) following the pre-monsoon storms. However, they may also be locally abundant at other times of the year (e.g. October), depending on the timing of the first significant rainfall events. They are generally very scarce or absent during the dry season (May–September), except on Gove Peninsula, where the dry season is less pronounced and adults may be locally abundant in July. The immature stages (eggs or larvae) have been recorded sporadically from November to June. Freshly emerged females have been observed mating in July and October, indicating that breeding also occurs at these times of the year. The larvae feed on the soft new cladodes and flowers of the food plants. Presumably, several generations are completed annually and the species survives the dry periods in pupal diapause.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Idalima metasticta

Relative abundance (%)

Month

Idalima metasticta (n = 81)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Specimen ≥1970
Observation ≥1970
Specimen <1970
Larval food plants

Geographic range
Phylogeographical boundary
IRDA/decographical boundary
Indigo Day-moth

Idalima leonora (Doubleday, 1846)

Distribution

This species is endemic to the study region. It has a disjunct distribution, occurring in the northern Kimberley (Mitchell Plateau, WA) and in the Top End. It generally occurs in the higher rainfall areas (> 1,300 mm mean annual rainfall), although it has been recorded as far south as Manbullo, NT (c. 900 mm), based on a historical record in the AM in which a specimen was collected in 1916. The geographic range in the Top End corresponds reasonably well with the spatial distribution of its two known larval food plants (*Hibbertia* spp.); however, these plants are absent from the Kimberley, the Darwin area and Litchfield National Park, NT, indicating that several other (as yet unreported) food plants are used in these areas.

Habitat

Idalima leonora breeds in savannah woodland and eucalypt heathy open woodland where the larval food plants grow as perennial shrubs on sandy loam or rocky sandstone outcrops (Braby 2011a). Adults have also been recorded in eucalypt heathy woodland on white coastal sand, where they no doubt breed.

Larval food plants

Hibbertia brownii, *H. candicans* (Dilleniaceae).

Seasonality

Adults occur during most months of the year, but they are most abundant during the early wet season (November–February), depending on the timing of the pre-monsoon storms or monsoon rains. They are generally scarce or absent during the late wet season and dry season. The immature stages (eggs or larvae) have been recorded mainly during the wet season (November–March); however, on Cobourg Peninsula, NT, adults were noted to be locally common in August and females were observed ovipositing on the larval food plant (*Hibbertia brownii*), which was resprouting from rootstock following a dry season burn two months earlier. Presumably, several generations are completed annually and the species normally survives the dry periods in pupal diapause.

Breeding status

This species is resident in the study region.

Conservation status

LC. Although the species *I. leonora* has a wide geographical range, the impact of inappropriate fire regimes—particularly an increase in the frequency of dry season burns in some areas of the range, such as sandstone communities—requires further investigation. Although the larval food plants resprout from rootstock, if the fire regime is too frequent, with short interfire intervals, there may be little or no recruitment. Thus, *I. leonora* may qualify as Near Threatened (NT) in future. Monitoring of the abundance or occupancy of the moth and its food plants is required to clarify the effect of fire frequency as a key threatening process. The fire regime needs to be carefully managed (e.g. an interfire interval of more than five years) to ensure the food plants have sufficient time to mature, flower and set seed.
Idalima leonora

Relative abundance (%)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Idalima leonora (n = 37)
Splendid Day-moth
Idalima aethrias (Turner, 1908)

Distribution
This species occurs in the north of the Northern Territory of the study region. It is restricted to the higher rainfall areas (> 1,300 mm mean annual rainfall) of the north-western corner of the Top End. It has been recorded as far south as Daly River Mission (J. F. Hutchinson) and Kakadu National Park (near Twin Falls) and as far east as the King River, NT. The geographic range closely corresponds with the spatial distribution of its larval food plants. The food plants, however, also occur slightly further south, at Fish River Station and Katherine Gorge, and extend further east to Gove Peninsula and Groote Eylandt; thus, further field surveys are required to determine whether _I. aethrias_ occurs in these areas, particularly in the eastern half of the Top End. Outside the study region, _I. aethrias_ occurs in north-eastern Queensland.

Habitat
Idalima aethrias breeds in savannah woodland where the larval food plants grow as small perennial shrubs (Braby 2011a).

Larval food plants
Hibbertia brevipedunculata, H. cistifolia (Dilleniaceae).

Seasonality
Adults are seasonal, occurring during the ‘build-up’, wet season and early dry season (October–May), but they are most abundant during the early wet season (November and December) following the first substantial pre-monsoon storms. The immature stages (eggs or larvae) have been recorded during the wet season (November–February). The duration of the pupal stage is variable and there is probably only a single generation annually, followed by a partial second generation in the late wet season. The species survives the dry season in the pupal stage, which may remain in diapause for up to 11 months.

Breeding status
This species is resident in the study region.

Conservation status
LC. The species _I. aethrias_ has a restricted range in the study region within which it occurs in several conservation reserves, including Litchfield National Park, Garig Gunak Barlu National Park and Kakadu National Park. However, the impact of inappropriate fire regimes in some areas of the range requires further investigation. Although the larval food plants are currently listed as Least Concern (LC) under the _TPWCA_ and resprout from rootstock, if the fire regime is too frequent, with short interfire intervals, there may be little or no recruitment. Thus, _I. aethrias_ may qualify as Near Threatened (NT) in future. Monitoring of the abundance or occupancy of the moth and its food plants is required to clarify the effect of fire frequency as a key threatening process. The fire regime needs to be carefully managed (e.g. an interfire interval of more than five years) to ensure the food plants have sufficient time to mature, flower and set seed.
Rock-art Day-moth

Idalima sp. ‘Arnhem Land’

Distribution
This undescribed species is endemic to the study region. It occurs in the Top End, where it is restricted to the Arnhem Land Plateau, its presence in the region first detected in 1972. It has been recorded from two locations: 15 km south-west by south of Nimbuwah Rock (E. D. Edwards and M. S. Upton) and Kakadu National Park (Nourlangie Rock), NT (Braby 2015c). The larval food plant occurs throughout the Arnhem Land Plateau, as well as in eastern Arnhem Land; thus, further field surveys are required to determine whether *Idalima* sp. ‘Arnhem Land’ is more widely distributed in these areas than present records indicate.

Habitat
Idalima sp. ‘Arnhem Land’ breeds in eucalypt heathy woodland on broken sandstone hill slopes where the larval food plant grows as a perennial shrub in the understorey (Braby 2015c).

Larval food plant
Hibbertia candicans (Dilleniaceae).

Seasonality
Adults are seasonal, occurring only during the wet season (November–April), but they are most abundant during the early wet season (November–January) following the pre-monsoon storms, although they are never observed in large numbers or high densities. The immature stages (eggs or larvae) have been recorded during the wet season (December–April). There is probably only a single generation annually, followed by a partial second generation in the late wet season. Presumably, the species survives the dry season in pupal diapause.

Breeding status
This species is resident in the study region.

Conservation status
Near Threatened (NT). The species *Idalima* sp. ‘Arnhem Land’ is a short-range endemic (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 1,400 sq km), with the entire range occurring within a single conservation reserve (Kakadu National Park). However, it may qualify for a threatened category in the near future because the taxon is threatened by inappropriate fire regimes, particularly too frequent fires (every one–two years) on the Arnhem Land Plateau (see also Russell-Smith et al. 1998, 2002). Although the larval food plant is currently listed as Least Concern (LC) under the *TPWCA* and it resprouts from rootstock, if the fire regime on sandstone plant communities is too frequent, with short interfire intervals, there may be little or no recruitment. That is, the population of *Idalima* sp. ‘Arnhem Land’ is likely to be reduced in future based on a projected decline in the AOO, quality of its habitat and/or number of locations (criteria A3c, D2). Monitoring of the abundance and occupancy of the moth and its food plant is required for this species. The fire regime on the sandstone plateau–breakaway country needs to be carefully managed (e.g. an interfire interval of more than five years) to ensure the food plant has sufficient time to mature, flower and set seed.
Idalima sp. 'Arnhem Land'

- Specimen ≥1970
- Observation ≥1970
- Larval food plant

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Kakadu Whistling Moth
Hecatesia sp. ‘Arnhem Land’

Distribution
This undescribed species is endemic to the study region. It occurs in the Top End, where it is restricted to the Arnhem Land Plateau, its presence in the region first detected in 1973. It is currently known from only two locations: 6 km south–south-west of Oenpelli (J. C. Cardale and M. S. Upton) and Kakadu National Park (Nourlangie Rock) (Braby 2015e), NT. Although the larval food plant is very widely distributed throughout the study region, *Hecatesia* sp. ‘Arnhem Land’ is confined to areas where the plant grows on sandstone in the higher rainfall areas (> 900 mm mean annual rainfall).

Habitat
Hecatesia sp. ‘Arnhem Land’ breeds in long-unburnt eucalypt heathy woodland on steep broken sandstone hill slopes where patches of the larval food plant grow as a scrambling parasitic vine in superabundance over understorey shrubs (Braby 2015e).

Larval food plant
Cassytha filiformis (Lauraceae).

Seasonality
Adults appear to be rare and seasonal, having been recorded only during the wet season (November–April) and early dry season (June), but there are too few records (n = 7) to assess temporal changes in abundance. The immature stages (eggs or larvae) have been recorded from December to March. All pupae reared during the wet season developed directly with no evidence of diapause, suggesting that several generations are completed at this time. However, it is likely the species survives the late dry season in pupal diapause and that adult emergence is triggered by the pre-monsoon storms during the ‘build-up’.

Breeding status
This species is resident in the study region.

Conservation status
Near Threatened (NT). The species *Hecatesia* sp. ‘Arnhem Land’ is a narrow-range endemic (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 1,400 sq km), with the entire range occurring within a single conservation reserve (Kakadu National Park). However, it may qualify for a threatened category in the near future because the taxon is threatened by inappropriate fire regimes, particularly too frequent fires, with short interfire intervals (every one–two years), on the Arnhem Land Plateau (see also Russell-Smith et al. 1998, 2002). That is, the population of *Hecatesia* sp. ‘Arnhem Land’ is likely to be reduced in future based on a projected decline in the AOO, quality of its habitat and/or number of locations (criteria A3c, D2). Monitoring of the abundance and occupancy of the moth and its food plant is required for this species. The fire regime on the sandstone plateau–breakaway country needs to be carefully managed to ensure that long-unburnt patches of habitat (with an interfire interval of more than five years) persist, which will encourage high local densities of the food plant.
Hecatesia sp. 'Arnhem Land'

- Specimen ≥1970
- Observation ≥1970
- Larval food plant

Map 1: Geographic distribution of Hecatesia sp. 'Arnhem Land', showing specimen and observation records.

Map 2: Geographic range of Hecatesia sp. 'Arnhem Land', including phylogenetic and bioregional boundaries.

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Mimetic Whistling Moth
Hecatesia sp. ‘Amata’

Distribution
This undescribed species is restricted to the lower rainfall areas (600–800 mm mean annual rainfall) of the Kimberley and Northern Deserts, where it has been recorded from three locations: ‘Barrier Range’ near Napier Range, WA, based on a male specimen in the ANIC collected some time in 1887 (see Froggatt 1934); and Keep River National Park (Braby 2015e) and Daly Waters, NT. The larval food plant is considerably more widespread than the known geographic range; thus, further field surveys are required to determine whether *Hecatesia* sp. ‘Amata’ is more widespread in the semi-arid zone than present records indicate. Outside the study region, *Hecatesia* sp. ‘Amata’ occurs in north-eastern Queensland (M. F. Braby, unpublished data).

Habitat
Hecatesia sp. ‘Amata’ breeds in long-unburnt eucalypt open woodland on flat sandy loam where the larval food plant grows as a fine scrambling parasitic vine in superabundance on various grasses, particularly *Triodia* (Braby 2015e).

Larval food plant
Cassytha capillaris (Lauraceae).

Seasonality
Adults appear to be seasonal, having been recorded only during the wet season (January–April), but there are too few records (n = 4) to assess temporal changes in abundance. The immature stages (larvae) have been recorded in February and March. All pupae reared during the wet season developed directly with no evidence of diapause, suggesting that at least two generations are completed at this time. However, it is likely the species survives the late dry season in pupal diapause and the first monsoon rains trigger adult emergence.

Breeding status
This species is resident in the study region.

Conservation status
LC. The species *Hecatesia* sp. ‘Amata’ has a restricted range within which it occurs in at least one conservation reserve (Keep River National Park). However, the effect of inappropriate fire regimes in some areas of the range requires further investigation because breeding colonies are likely to be impacted by too frequent fires, with short interfire intervals (every one–two years), such as prescribed control burns. Thus, *Hecatesia* sp. ‘Amata’ may qualify as Near Threatened (NT) in future. The fire regime needs to be carefully managed to ensure that long-unburnt patches of habitat (with an interfire interval of more than five years) persist, which will encourage high local densities of the food plant.
Central Spotted Day-moth
Mimeusemia centralis (Rothschild, 1896)

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not understood. The individuals were recorded during the early wet season (December) following the pre-monsoon storms. Presumably, adults are highly seasonal and local in occurrence.

Breeding status
Mimeusemia centralis is assumed to be resident in the study region.

Conservation status
DD. The species *M. centralis* is currently known from only one location in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 700 sq km). Although it has been recorded from a conservation reserve (Casuarina Coastal Reserve), further investigations are required to clarify the ecological requirements, critical habitat and distribution of this species.

Distribution
This species is known from only a single record in the Top End of the study region, where a specimen was collected at Casuarina Coastal Reserve near Darwin, NT, in December 2007 (Braby 2014a). Outside the study region, *M. centralis* occurs in northern Queensland.

Habitat
The breeding habitat of *M. centralis* has not been recorded in the study region. Two adult males were observed in coastal semi-deciduous monsoon vine thicket (Braby 2014a) in which the species no doubt breeds.

Table: Monthly Development Cycle

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Rustic Day-moth
Mimeusemia econia Hampson, 1900

Distribution
This species is known from only a small series of specimens (11) collected from two locations (Seaflower Bay and ‘Teranadon Bay’) in Vansittart Bay near Cape Bougainville, WA, in the northern Kimberley of the study region in 2017 (J. E. and A. Koeyers). Outside the study region, *M. econia* occurs in Christmas Island, the Lesser Sunda Islands, Sulawesi and north-eastern Australia.

Habitat
The breeding habitat of *M. econia* has not been recorded in the study region. The specimens were collected at night at a light trap adjacent to coastal semi-deciduous monsoon vine thicket in which the species no doubt breeds.

Larval food plants
Not recorded in the study region.

Seasonality
The seasonal abundance and breeding phenology of this species are not understood. All adults have been recorded during the early wet season (December and January) immediately following the first pre-monsoon rains. Presumably, adults are highly seasonal and local in occurrence.

Breeding status
Mimeusemia econia is assumed to be resident in the study region.

Conservation status
DD. The species *M. econia* is currently known from only one location in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 1,400 sq km). Further investigations are required to clarify the ecological requirements, critical habitat and distribution of this species.

Map

*Fig. 21. Distribution of *Mimeusemia econia*. Specimen ±1970.*

Table

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Painted Day-moth
Agarista agricola (Donovan, 1805)

Distribution
This species is represented by two subspecies: *A. agricola biformis* Butler, 1884, which is endemic to the study region, and *A. agricola agricola* (Donovan, 1805). Both subspecies occur in the north of the Northern Territory, where they are restricted to the higher rainfall areas (> 1,300 mm mean annual rainfall). *Agarista agricola biformis* occurs in the north-western corner of the Top End, reaching its southernmost occurrence at Daly River, NT, whereas *A. agricola agricola* appears to be geographically separated, confined to Gove Peninsula, where it has been recorded at Drimmie Head, Nhulunbuy (L. Wilson) and Macassan Beach (B. Hoffmann), NT. The geographic range of *A. agricola* corresponds well with the spatial distribution of the known and putative larval food plants (*Leea* spp.). The food plants, however, also occur on the Tiwi Islands and Groote Eylandt, NT; thus, further field surveys are required to determine whether the species is present in these areas. Outside the study region, *A. agricola* occurs from Timor, through mainland New Guinea to north-eastern and eastern Australia.

Habitat
Agarista agricola breeds in the ecotone between savannah woodland and monsoon vine thicket or along the very edge of semi-deciduous monsoon vine thicket on rock outcrops where the larval food plant (*Leea rubra*) grows as a deciduous perennial shrub 1–3 m high (Braby 2011a). Adults have also been recorded near evergreen monsoon vine forest where the putative larval food plant (*Leea indica*) grows in the understorey; the larvae readily feed on this plant in captivity, suggesting *A. agricola* probably breeds in this habitat.

Larval food plants
Leea rubra (Vitaceae); probably *Leea indica*.

Seasonality
Adults are seasonal, occurring only during the ‘build-up’ and wet season (October–May), but there are too few records (n = 23) to assess temporal changes in abundance. In general, adults tend to be more numerous during the ‘build-up’ (October and November) following the first substantial pre-monsoon storms and then again during the late wet season (March and April). The breeding phenology is not well understood. The immature stages have been recorded from October to December. The larvae feed on the foliage of the food plant, which is seasonally deciduous, dropping its leaves as the dry season progresses. Presumably, at least two generations are completed annually and the species survives the dry season in pupal diapause.
Breeding status
This species is resident in the study region.

Conservation status
Agarista agricola bifformis: LC. Agarista agricola agricola: DD. The subspecies A. agricola bifformis is a short-range endemic (EOO = 8,860 sq km) and occurs in several conservation reserves, including Fogg Dam Conservation Reserve, Mary River National Park (Mt Bundy) and Kakadu National Park, NT. Despite its restricted occurrence, there are no known threats facing the taxon. However, the subspecies A. agricola agricola has a short range in the study region (AOO is likely to be < 2,000 sq km, with spatial buffering of records providing a first approximation of 1,400 sq km) and is known from only two locations on Gove Peninsula, NT. Targeted field surveys to clarify the extent of its distribution and to determine key threatening processes should be a priority for this subspecies.
Graceful Day-moth
Cruria donowani (Boisduval, 1832)

Habitat

Cruria donowani breeds in savannah woodland where the larval food plant grows as a vine, often at the base of tree trunks (Braby 2015e). Adults are readily attracted to flowers of *Erythrophleum chlorostachys* on which males seek females for mating.

Larval food plant

Cayratia trifolia (Vitaceae).

Seasonality

Adults are seasonal, occurring only during the ‘build-up’, wet season and early dry season (October–May), but they are most abundant from November to January, depending on the timing of the pre-monsoon storms, and before the arrival of monsoon rains. The immature stages (eggs and larvae) have been recorded in December. The larvae feed on the new soft leaf growth of the food plant, which regenerates from an underground tuber during the ‘build-up’ following the pre-monsoon storms and/or an increase in humidity. The food plant is a short-lived seasonal perennial vine and senesces during the dry season. The duration of the pupal stage is variable and there is probably only a single generation annually, followed by a partial second generation in the late wet season. The species survives the dry season in the pupal stage, which may remain in diapause for up to 10 months.

Breeding status

This species is resident in the study region.

Conservation status

LC.
10. DAY-FLYING MOTHS

Cruria donowani

- Specimen ≥1970
- Observation ≥1970
- Specimen <1970
- Larval food plant

Relative abundance (%)

- Month
- Cruria donowani (n = 29)

Cruria donowani (n = 29)

- Relative abundance (%) vs. Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>

Map

- Geographic range
- Phyogeographical boundary
- IDA bioregional boundary

Maps depicting distribution and abundance of Cruria donowani.
Tiger Day-moth
Cruria darwiniensis (Butler, 1884)

Distribution
This species is endemic to the study region. It occurs in the north of the Northern Territory, where it is restricted to the higher rainfall areas (> 900 mm mean annual rainfall) of the Top End, reaching its southernmost limit at Katherine, NT. The geographic range is wider than the spatial distribution of its known larval food plant (*Typhonium flagelliforme*), indicating that several other (as yet unreported) food plants are used. In particular, *Typhonium cochleare* occurs commonly in the southern and eastern areas of the range of *C. darwiniensis*.

The taxonomic status and relationships of *Cruria darwiniensis* require further investigation. Kiriakoff (1977) treated the taxon as a polytypic species, with two allopatric subspecies: *C. darwiniensis darwiniensis* (Butler, 1884) from the Northern Territory and *C. darwiniensis platycantha* (Meyrick, 1891) from northern Queensland. However, Edwards (1996) treated *C. darwiniensis platycantha* as a junior synonym of *C. tropica* (T. P. Lucas, 1891), which was considered a distinct species, whereas *C. darwiniensis* was treated as a synonym of *C. donovani* (Boisduval, 1832). In this work, *C. darwiniensis*, which is clearly a species distinct from *C. donovani*, is tentatively treated as a full species endemic to the Top End pending further investigation of its relationship with *C. tropica*.

Habitat
Cruria darwiniensis breeds in mixed paperbark–pandanus swampland where the known larval food plant grows as a seasonal geophytic herb in low-lying water (Braby 2011a). Adults have also been collected in savannah woodland and mixed semi-deciduous monsoon vine thicket on limestone, where it almost certainly breeds on alternative food plants, especially *Typhonium cochleare*, which typically grows in eucalypt open forest on seasonally waterlogged sandy soils and occasionally in monsoon vine thicket.

Larval food plants
Typhonium flagelliforme (Araceae); probably other *Typhonium* spp., including *T. cochleare*.

Seasonality
Adults are seasonal, occurring only during the wet season (November–April), but they are most abundant in January and February. The immature stages (eggs or larvae) have been recorded from January to March during and following the monsoon rains. The larvae feed on the foliage of the food plant, which is a short-lived seasonal herb. The duration of the pupal stage is variable and there are probably only two generations annually. The species survives the dry season in the pupal stage, which may remain in diapause for up to nine months.

Breeding status
This species is resident in the study region.

Conservation status
LC.
10. DAY-FLYING MOTHs

Cruria darwiniensis

- Specimen ≥1970
- Observation ≥1970
- Specimen <1970
- Larval food plant
- Putative larval food plants

Relative abundance (%)

- Month

Cruria darwiniensis (n = 33)

Relative abundance (%)

- Month

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
Mistletoe Day-moth

Comocrus behri (Angas, 1847)

Distribution

This species occurs in the northern Kimberley at Drysdale River Station, WA (S. Craswell), the Top End, Northern Deserts and western Gulf Country of the study region, its presence detected only as recently as 2008 (Braby 2011a). It extends from moist coastal areas to drier inland areas of the semiarid zone (< 600 mm mean annual rainfall), where it has been recorded as far south as Limbunya Station and Kalkaringi in the Victoria River District and the Favenc Range, NT (Braby 2011a, 2015e). The larval food plants are considerably more widespread than the known geographic range, occurring also in the southern Kimberley, Tiwi Islands, Groote Eylandt and western Queensland in the Gulf Country; thus, further field surveys are required to determine whether *C. behri* is established in these areas. Outside the study region, *C. behri* occurs throughout eastern and southern Australia, as well as in the arid zone of central Australia (Braby 2011a).

Habitat

Comocrus behri breeds in a variety of eucalypt woodland, open woodland and low open woodland habitats where the larval food plants grow as mistletoes (parasitic shrubs) on various trees, including *Eucalyptus*, *Corymbia* and *Acacia* (Braby 2011a, 2015e).

Larval food plants

Amyema bifurcata, *A. sanguinea*, *A. villiflora*, *Diplatia grandibractea* (Loranthaceae).

Seasonality

Adults have been recorded during most months of the year, but there are too few records (n = 19) to assess any seasonal changes in abundance. In general, adults tend to be more numerous during the second half of the year (June–December), particularly during the mid to late dry season (similar to *Delias argenthona* and *Ogyris* spp., which also use Loranthaceae as their larval food plants); however, adults of *C. behri* are usually rare and are never observed in large numbers or high densities, unlike in the temperate areas of south-eastern Australia. The immature stages (larvae or pupae) have been recorded sporadically from May to November, when adults are more abundant. Presumably, the species breeds continuously and several generations are completed annually.

Breeding status

This species is resident in the study region.

Conservation status

LC.
Month by Month Development

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td></td>
</tr>
<tr>
<td>Larva</td>
<td></td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
</tbody>
</table>
The lycaenid butterfly *Candalides heathi* (Rayed Blue) was recently recorded from the study region. A male in good condition was collected from the Northern Deserts at Camfield Station at the northern edge of the Tanami Desert, NT (17°06′14.1″S, 131°31′27.9″E) by Jared Archibald on 15 September 2018. The species was previously unknown from the study region, having been recorded from arid and semi-arid areas further south and east – the nearest localities being at 270 km ENE of Alice Springs, NT and at 20 km SSW of Normanton, Qld near the Gulf of Carpentaria. This additional species brings the total list for the monsoon tropics of northern Australia to 164 species (133 butterflies and 31 diurnal moths).
APPENDIX I

List of larval food plants

Notes:

1. Asterisk (*) denotes introduced plant.
2. Taxa in blue denote putative larval food plants that require confirmation. These records are based on published Lepidoptera–plant associations adjacent to the study region or are considered very likely based on the spatial distribution of the species or on other evidence from the study region.

ACANTHACEAE

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Insect(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternanthera denticulata</td>
<td>Hypolimnas bolina</td>
</tr>
<tr>
<td>*Asystasia gangetica</td>
<td>Hypolimnas alimena, Hypolimnas bolina, Junonia orithya</td>
</tr>
<tr>
<td>Brunoniella australis</td>
<td>Hypolimnas alimena</td>
</tr>
<tr>
<td>Brunoniella linearifolia</td>
<td>Hypolimnas alimena</td>
</tr>
<tr>
<td>Dipteracanthus bracteatus</td>
<td>Yoma sabina</td>
</tr>
<tr>
<td>Hygrophila angustifolia</td>
<td>Junonia hedonia, Junonia villida, Zizula hylax</td>
</tr>
<tr>
<td>Pseuderanthemum variabile</td>
<td>Hypolimnas alimena, Junonia orithya</td>
</tr>
<tr>
<td>Thunbergia arnhemica</td>
<td>Junonia orithya</td>
</tr>
</tbody>
</table>

AMARANTHACEAE

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Insect(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecticornia halocnemoides</td>
<td>Theclistes sulphius</td>
</tr>
<tr>
<td>Tecticornia australasica</td>
<td>Theclistes sulphius</td>
</tr>
<tr>
<td>Tecticornia indica</td>
<td>Theclistes sulphius</td>
</tr>
</tbody>
</table>

ANACARDIACEAE

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Insect(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchanania obovata</td>
<td>Arhopala eupolis</td>
</tr>
<tr>
<td>Semecarpus australiensis</td>
<td>Prosotas dubiosa</td>
</tr>
</tbody>
</table>
ANNONACEAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Butterfly Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annona muricata</td>
<td>Graphium eurypylus</td>
</tr>
<tr>
<td>Hubera nitidissima</td>
<td>Graphium eurypylus</td>
</tr>
<tr>
<td>Meiogyne cylindrocarpa</td>
<td>Graphium eurypylus</td>
</tr>
<tr>
<td>Melodorum rupestre</td>
<td>Graphium eurypylus, Protographium leosthenes</td>
</tr>
<tr>
<td>Miliusa brahei</td>
<td>Graphium eurypylus</td>
</tr>
<tr>
<td>Miliusa traceyi</td>
<td>Graphium eurypylus</td>
</tr>
<tr>
<td>Monoon australis</td>
<td>Graphium eurypylus</td>
</tr>
<tr>
<td>Polyalthia longifolia</td>
<td>Graphium eurypylus</td>
</tr>
</tbody>
</table>

APOCYNACEAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Butterfly Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenium obesum</td>
<td>Euploea corinna</td>
</tr>
<tr>
<td>Brachystelma glabriflorum</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Calotropis procer</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Cynanchum carnosum</td>
<td>Danaus affinis, Danaus petilia, Tirumala hamata, Danaus chrysippus</td>
</tr>
<tr>
<td>Cynanchum christineae</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Cynanchum floribundum</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Cynanchum leibianum</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Cynanchum pedunculatum</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Gymnanthera oblonga</td>
<td>Euploea alcathoe, Euploea corinna</td>
</tr>
<tr>
<td>Ichnocarpus frutescens</td>
<td>Euploea corinna</td>
</tr>
<tr>
<td>Marsdenia australis</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Marsdenia geminata</td>
<td>Euploea corinna, Euploea sylvester</td>
</tr>
<tr>
<td>Marsdenia glandulifera</td>
<td>Euploea alcathoe, Tirumala hamata</td>
</tr>
<tr>
<td>Marsdenia velutina</td>
<td>Tirumala hamata</td>
</tr>
<tr>
<td>Marsdenia viridiflora</td>
<td>Danaus affinis, Euploea corinna</td>
</tr>
<tr>
<td>Ocystelma esculentum</td>
<td>Danaus genutia, Danaus petilia</td>
</tr>
<tr>
<td>Parsonsia alboflavescens</td>
<td>Euploea alcathoe, Euploea corinna, Euploea sylvester</td>
</tr>
<tr>
<td>Rhyncharrhena linearis</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Sarcolobus hullii</td>
<td>Danaus affinis, Euploea corinna</td>
</tr>
<tr>
<td>Sarcostemma viminale</td>
<td>Euploea corinna</td>
</tr>
<tr>
<td>Secamone elliptica</td>
<td>Euploea corinna, Tirumala hamata</td>
</tr>
<tr>
<td>Tylophora flexuosa</td>
<td>Danaus petilia</td>
</tr>
<tr>
<td>Rhyncharrhena linearis</td>
<td>Danaus petilia</td>
</tr>
</tbody>
</table>

ARACEAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Butterfly Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhonium cochleare</td>
<td>Cruria darwiniensis</td>
</tr>
<tr>
<td>Typhonium flagelliforme</td>
<td>Cruria darwiniensis</td>
</tr>
<tr>
<td>FAMILY</td>
<td>Genus/Species</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ARECACEAE</td>
<td>Carpentaria acuminata</td>
</tr>
<tr>
<td></td>
<td>Livistona benthamii</td>
</tr>
<tr>
<td></td>
<td>Livistona humilis</td>
</tr>
<tr>
<td></td>
<td>Livistona inermis</td>
</tr>
<tr>
<td></td>
<td>Livistona lorophylla</td>
</tr>
<tr>
<td></td>
<td>Livistona nasmophila</td>
</tr>
<tr>
<td></td>
<td>Livistona rigida</td>
</tr>
<tr>
<td></td>
<td>Livistona victoriae</td>
</tr>
<tr>
<td>ARISTOLOCHIACEAE</td>
<td>Aristolochia acuminata</td>
</tr>
<tr>
<td></td>
<td>Aristolochia holtzei</td>
</tr>
<tr>
<td></td>
<td>*Aristolochia indica</td>
</tr>
<tr>
<td></td>
<td>Aristolochia pubera</td>
</tr>
<tr>
<td></td>
<td>Aristolochia thozetii</td>
</tr>
<tr>
<td>ASTERACEAE</td>
<td>*Synedrella nodiflora</td>
</tr>
<tr>
<td></td>
<td>*Tridax procumbens</td>
</tr>
<tr>
<td>CANNABACEAE</td>
<td>Celtis australiensis</td>
</tr>
<tr>
<td>CAPPARACEAE</td>
<td>Capparis jacobsi</td>
</tr>
<tr>
<td></td>
<td>Capparis lasiantba</td>
</tr>
<tr>
<td></td>
<td>Capparis sepiaria</td>
</tr>
<tr>
<td></td>
<td>Capparis umbonata</td>
</tr>
<tr>
<td>CELASTRACEAE</td>
<td>Salacia chinensis</td>
</tr>
<tr>
<td>CHRYSOBALANACEAE</td>
<td>Maranthes corymbosa</td>
</tr>
</tbody>
</table>
CLUSIACEAE
Calophyllum inophyllum Arhopala micale

COMBRETACEAE
Lumnitzera racemosa Hypochrysops apelles
Terminalia carpentariae Arhopala eupolis
Terminalia catappa Petrelaea tombugensis
Terminalia ferdinandiana Arhopala eupolis
Terminalia microcarpa Badamia exclamationis
Terminalia muelleri Petrelaea tombugensis

CONVOLVULACEAE
Evolvulus alsinoides Junonia villida

CYPERACEAE
Cyperus javanicus Hesperilla sexguttata
Scleria sphacelata Hesperilla crypsigramma

DILLENIACEAE
Hibbertia brevipedunculata Idalima aethrias
Hibbertia brownii Idalima leonora
Hibbertia candicans Idalima leonora, Idalima sp. ‘Arnhem Land’
Hibbertia cistifolia Idalima aethrias
Hibbertia dilatata Idalima metasticta
Hibbertia juncea Idalima metasticta

EBENACEAE
Diospyros maritima Graphium eurypylus

EUPHORBIACEAE
Adriana tomentosa Theclinesthes albocinctus
Excoecaria agallocha Delias aestiva
Excoecaria ovalis Delias aestiva
Mallotus nesophilus Catopyrops florinda
FABACEAE

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>butterfly Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia aneura</td>
<td>Jalmenus icilius</td>
</tr>
<tr>
<td>Acacia aulacocarpa</td>
<td>Sahulana scintillata</td>
</tr>
<tr>
<td>Acacia auriculiformis</td>
<td>Prosotas dubiosa, Theclinesthes miskini</td>
</tr>
<tr>
<td>Acacia difficultis</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>Acacia hemsleyi</td>
<td>Charaxes sempronius</td>
</tr>
<tr>
<td>Acacia holosericea</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>Acacia leptocarpa</td>
<td>Hypochrysops ignitus</td>
</tr>
<tr>
<td>Acacia playacarpa</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>Acacia plectocarpa</td>
<td>Nacaduba biocellata</td>
</tr>
<tr>
<td>Acacia scopulorum</td>
<td>Prosotas dubiosa</td>
</tr>
<tr>
<td>Acacia tetragonophylla</td>
<td>Jalmenus icilius</td>
</tr>
<tr>
<td>Acacia torulosa</td>
<td>Nacaduba biocellata</td>
</tr>
<tr>
<td>Acacia tumida</td>
<td>Hypochrysops ignitus, Nacaduba biocellata</td>
</tr>
<tr>
<td>Bosisia bossiaeoides</td>
<td>Jamides phaseli</td>
</tr>
<tr>
<td>Cajanus aromaticus</td>
<td>Catochrysops panormus, Jamides phaseli</td>
</tr>
<tr>
<td>Cajanus pubescens</td>
<td>Catochrysops panormus</td>
</tr>
<tr>
<td>Canavalia rosea</td>
<td>Jamides phaseli</td>
</tr>
<tr>
<td>*Cassia fistula</td>
<td>Catopsilia pomona</td>
</tr>
<tr>
<td>*Cassia siamea</td>
<td>Catopsilia pomona</td>
</tr>
<tr>
<td>Cathormion umbellatum</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>Chamaecrista mimosoides</td>
<td>Eurema herla</td>
</tr>
<tr>
<td>Chamaecrista nigricans</td>
<td>Eurema herla</td>
</tr>
<tr>
<td>Chamaecrista sp.</td>
<td>Eurema laeta</td>
</tr>
<tr>
<td>Crotalaria cunninghamii</td>
<td>Lampides boeticus</td>
</tr>
<tr>
<td>Crotalaria novaehollandiae</td>
<td>Lampides boeticus</td>
</tr>
<tr>
<td>Cullen badocanum</td>
<td>Papilio demoleus</td>
</tr>
<tr>
<td>Cullen balsamicum</td>
<td>Papilio demoleus</td>
</tr>
<tr>
<td>Cullen cinereum</td>
<td>Papilio demoleus</td>
</tr>
<tr>
<td>*Dalbergia sisoo</td>
<td>Prosotas dubiosa</td>
</tr>
<tr>
<td>*Delonix regia</td>
<td>Anthene seltuttus</td>
</tr>
<tr>
<td>Derris trifoliata</td>
<td>Hasora hurama</td>
</tr>
<tr>
<td>Desmodium heterocarpon</td>
<td>Everes lacturnus</td>
</tr>
<tr>
<td>*Desmodium triflorum</td>
<td>Zizina otis</td>
</tr>
<tr>
<td>*Desmodium sp.</td>
<td>Anthene lycaenoides</td>
</tr>
<tr>
<td>Flemingia lineata</td>
<td>Catochrysops panormus, Freyeria putli</td>
</tr>
<tr>
<td>Galactia tenuiflora</td>
<td>Eurema alitha</td>
</tr>
<tr>
<td>Indigofera linifolia</td>
<td>Freyeria putli</td>
</tr>
<tr>
<td>*Macroptilium atropurpureum</td>
<td>Euchrysops cnejus, Famegana alsulus</td>
</tr>
<tr>
<td>*Macroptilium lathyroides</td>
<td>Euchrysops cnejus</td>
</tr>
<tr>
<td>Millettia pinnata</td>
<td>Anthene lycaenoides, Anthene seltuttus, Hasora chromus, Jamides phaseli, Prosotas dubiosa</td>
</tr>
</tbody>
</table>
*Mimosa pigra
Neptunia gracilis
Neptunia monosperma
Peltophorum pterocarpum
*Senna alata
Senna artemisioides
Senna leptoclada
Senna magnifolia
*Senna occidentalis
Senna oligocladua
Senna planitiicola
Senna surattensis
Senna venusta
Sesbania cannabina
Sesbania simpliciuscula
*Tephrosia sp.
Tephrosia specchii
Vigna lanceolata
Vigna marina
Vigna radiata
*Vigna unguiculata
Vigna vexillata

FLAGELLARIACEAE
Flagellaria indica

IRIDACEAE
Patersonia macrantha

LAMIACEAE
Clerodendrum floribundum
Vitex acuminata

LAURACEAE
Cassytha capillaris
Cassytha filiformis
Cryptocarya cunninghamii

Charaxes sempronius
Eurema smilax
Eurema smilax
Charaxes sempronius
Catopsilia pomona
Jalmenus icilius, Eurema smilax
Catopsilia scylla
Catopsilia pomona
Eurema smilax
Catopsilia pomona, Catopsilia pyranthe
Catopsilia scylla
Catopsilia pomona, Catopsilia pyranthe
Anthene lycanoides, Catopsilia scylla
Catopsilia pomona, Catopsilia pyranthe
Theclinesthes miskini
Catochrysops panormus, Jamides phaseli
Famegana alsulus
Jamides phaseli
Euchrysops cnejus, Famegana alsulus
Euchrysops cnejus
Euchrysops cnejus
Euchrysops cnejus, Famegana alsulus

Telicota augias, Anthene lycanoides
Mesodina gracillima
Hypolycaena phorbas, Hypochrysops ignitus
Charaxes sempronius
Candalides delospila, Candalides erinus, Candalides geminus, Hecatesia sp. 'Amatá'
Candalides erinus, Candalides geminus, Hecatesia sp. 'Arnhem Land'
Graphium eurypylus
APPENDIX I

LECYTHIDACEAE

Barringtonia acutangula
Planchonia careya

Anthene lycaenoides
Chaetocneme denitza, Hypochrysops ignitus, Hypolycaena phorbas

LOGANIACEAE

Strychnos lucida

Deudorix smilis

LORANTHACEAE

Amyema benthamii
Amyema bifurcata
Amyema miquellii
Amyema quandang
Amyema sanguinea
Amyema thalassia
Amyema villiflora
Decaisnina signata
Decaisnina triflora
Dendrophthoe glabrescens
Dendrophthoe odontocalyx
Diplatia grandibractea

Ogyris amaryllis, Ogyris zosine
Comocrus behri, Ogyris oroetes, Ogyris zosine
Candalides margarita, Delias argenthona, Ogyris zosine
Ogyris amaryllis, Ogyris barnardi
Birthana cleis, Candalides margarita, Comocrus behri, Delias argenthona, Ogyris amaryllis, Ogyris iphis, Ogyris zosine
Ogyris amaryllis
Candalides margarita, Comocrus behri, Ogyris zosine
Birthana cleis, Candalides margarita, Delias argenthona, Hypolycaena phorbas, Ogyris zosine
Candalides margarita
Birthana cleis, Candalides margarita, Delias argenthona
Birthana cleis, Candalides margarita, Delias argenthona
Comocrus behri, Ogyris amaryllis, Ogyris zosine

MALVACEAE

Brachychiton diversifolius
Brachychiton paradoxus
*Sida acuta
Sterculia quadrifida

Arhopala micale
Hypochrysops ignitus
Hypolimnas bolina
Arhopala micale

MOLLUGINACEAE

Glinus lotoides
Glinus oppositifolius

Zizeeria karsandra
Zizeeria karsandra

MORACEAE

Ficus virens
Trophis scandens

Euploea corinna
Euploea darchia
MYRTACEAE

Corymbia bella
*Syzygium aqueum

Corymbia disjuncta
Eucalyptus miniata

Corymbia ferruginea
Corymbia ferruginea

Arhopala eupolis, Theclinesthes miskini

Anthene selttus, Arhopala eupolis, Theclinesthes miskini

Theclinesthes miskini

Arhopala eupolis

Anthene lycaenoides, Arhopala eupolis

OROBANCHACEAE

Buchnera asperata
Buchnera gracilis

Buchnera linearis

Junonia orithya

Junonia orithya

Junonia orithya

PASSIFLORACEAE

Adenia heterophylla
*Passiflora foetida

*Syzygium aqueum

Acraea andromacha, Cethosia penthesilea

Acraea andromacha, Acraea terpsicore

PHYLLANTHACEAE

Breynia cernua
Glochidion apodogynum

Bridelia tomentosa
Phyllanthus sp.

Eurema hecabe, Hypolycaena phorbas

Anthene lycaenoides

Hypochrysops ignitus

Eurema hecabe

POACEAE

*Andropogon gayanus
*Cynodon dactylon

Aristida macroclada
*Cymbopogon citratus

Arundinella nepalensis
*Cymbopogon procerus

*Axonopus compressus
*Cynodon dactylon

Borbo impar, Melanitis leda, Pelopidas lyelli, Taractrocera ina

Hypocysta adiante

Hypocysta adiante

SYNEMON sp. ‘Roper River’, SYNEMON sp. ‘Kimberley’

SYNEMON phaeoptila

SYNEMON sp. ‘Roper River’

SYNEMON wulwulam

Taractrocera ina

Taractrocera ina

Hypocysta adiante, Ocybadistes flavovittatus
Cynodon radiatus
Dichanthium sericeum
Digitaria gibbosa
Eriachne triiodioides
Eulalia aurea
Heteropogon contortus
Heteropogon triticeus
Hymenachne australiglumis
Imperata cylindrica
Ischaemum australe
Ischaemum tropicum
Megathyrsus maximus
Melinis repens
Micraira adamsii
Micraira brevis
Micraira compacta
Micraira dentata
Micraira dunlopii
Micraira inserta
Micraira lazaridis
Micraira multinervia
Micraira pungens
Micraira sp. ‘Purnululu’
Micraira spiciforma
Micraira spinifera
Micraira subspicata
Micraira tenuis
Micraira viscidula
Mnesithea rottboellioides
Oryza sativa
Paspalum scrobiculatum
Rottboellia cochinchinensis
Schizachyrium pachyarthron
Schizachyrium perplexum
Sorghum bicolor
Sorghum intrans
Sorghum macrospermum
Melanitis leda
Mycalesis perseus
Hypocyta adiante
Pelopidas lyelli
Taractrocera anisomorpha
Mycalesis perseus
Mycalesis perseus
Borro impar
Melanitis leda, Suniana lascivia, Telicota colon, Ypthima arctous, Mydosama sirius, Ocybadistes walkeri
Hypocyta adiante, Melanitis leda, Suniana lascivia, Telicota colon, Mydosama sirius, Ocybadistes hypomeloma
Borro impar, Melanitis leda, Pelopidas lyelli, Suniana lascivia, Suniana sunias, Taractrocera ina
Ocybadistes walkeri
Taractrocera ilia
Taractrocera psammopetra
Taractrocera ilia
Pelopidas lyelli, Telicota colon
Borro impar, Melanitis leda, Parnara amalia, Pelopidas lyelli, Telicota colon
Telicota colon
Borro cinnara
Neohesperilla crocea
Neohesperilla xiphiphora
Taractrocera anisomorpha
Neohesperilla xiphiphora
Taractrocera ina
Sorghum plumosum Synemon wulwulam
*Sporobolus sp. Hypocysta adiante
Themeda triandra Mycalesis perseus, Neohesperilla senta, Ocybadistes hypomeloma, Ypthima arctous
Triodia bitextura Proeidosa polysema
Triodia microstachya Proeidosa polysema
Triodia pungens Proeidosa polysema
*Urochloa mosambicensis Hypocysta adiante
Whiteochloa airoides Borbo impar
*Zea mays Borbo impar

PORTULACACEAE
Portulaca oleracea Hypolimnas misippus

PRIMULACEAE
Embelia curvinervia Nacaduba kurava

PUTRANJIVACEAE
Drypetes deplanchei Appias albina, Appias paulina

RHAMNACEAE
Alphitonia excelsa Hypochrysops ignitus

RHIZOPHORACEAE
Carallia brachiata Dysphania numana
Ceriops australis Hypochrysops apelles

RUBIACEAE
Gardenia megasperma Hypochrysops ignitus
*Oldenlandia corymbosa Periopta diversa
*Spermacoce articularis Periopta diversa
Spermacoce phalloides Periopta diversa

RUTACEAE
*Citrus sp. Papilio aegens, Papilio anactus, Papilio fuscus
Boronia kalumburuensis Nesolycaena caesia
Boronia lanceolata Nesolycaena urumelia
Boronia lanuginosa Nesolycaena urumelia
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boronia laxa</td>
<td>Nesolycaena urumelia</td>
</tr>
<tr>
<td>Boronia wilsonii</td>
<td>Nesolycaena caesia, Nesolycaena urumelia</td>
</tr>
<tr>
<td>Glycosmis trifoliata</td>
<td>Papilio fuscus</td>
</tr>
<tr>
<td>Micromelum minutum</td>
<td>Papilio aegeus, Papilio fuscus</td>
</tr>
<tr>
<td>Zanthoxylum parviflorum</td>
<td>Papilio fuscus</td>
</tr>
<tr>
<td>SALICACEAE</td>
<td></td>
</tr>
<tr>
<td>Flacourtia inermis</td>
<td>Phalanta phalantha</td>
</tr>
<tr>
<td>Flacourtia rukam</td>
<td>Phalanta phalantha</td>
</tr>
<tr>
<td>Flacourtia territorialis</td>
<td>Phalanta phalantha</td>
</tr>
<tr>
<td>SANTALACEAE</td>
<td></td>
</tr>
<tr>
<td>Santalum lanceolatum</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>SAPINDACEAE</td>
<td></td>
</tr>
<tr>
<td>Atalaya hemiglauca</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>Atalaya variifolia</td>
<td>Theclinesthes miskini</td>
</tr>
<tr>
<td>Cupaniopsis anacardioides</td>
<td>Anthene lycaenoides, Anthene seltuttus, Arhopala eupolis, Arhopala micale, Prosotas dubiosa, Sahulana scintillata</td>
</tr>
<tr>
<td>Dodonaea hispidula</td>
<td>Catopyrops florinda</td>
</tr>
<tr>
<td>Litchi chinensis</td>
<td>Anthene seltuttus</td>
</tr>
<tr>
<td>SMILACACEAE</td>
<td></td>
</tr>
<tr>
<td>Smilax australis</td>
<td>Hypochrysops ignitus, Hypolycaena phorbas</td>
</tr>
<tr>
<td>URTICACEAE</td>
<td></td>
</tr>
<tr>
<td>Pipturus argenteus</td>
<td>Pollanisus sp. 7</td>
</tr>
<tr>
<td>VIOLACEAE</td>
<td></td>
</tr>
<tr>
<td>Hybanthus aurantiacus</td>
<td>Acraea andromacha</td>
</tr>
<tr>
<td>Hybanthus enneaspermus</td>
<td>Acraea andromacha, Acraea terpsicore</td>
</tr>
<tr>
<td>VITACEAE</td>
<td></td>
</tr>
<tr>
<td>Ampelocissus acetosa</td>
<td>Periopta ardescens, Pseudosesia oberthuri, Radinocera sp.</td>
</tr>
<tr>
<td>Ampelocissus frutescens</td>
<td>Radinocera vagata</td>
</tr>
<tr>
<td>Cayratia maritima</td>
<td>Radinocera vagata</td>
</tr>
<tr>
<td>Cayratia trifolia</td>
<td>Cruria donowani, Radinocera vagata</td>
</tr>
</tbody>
</table>
Leea indica
Leea rubra

ZYGOPHYLLACEAE

Tribulopis bicolor
Tribulus cistoides

Agarista agricola
Agarista agricola

Zizeeria karsandra
Zizeeria karsandra
Conservation status evaluation for taxa with small geographic range sizes

Conservation evaluation is based on IUCN Red List categories and criteria, particularly criterion B: geographic range size according to extent of occurrence (EOO) or area of occupancy (AOO), number of locations and evidence of decline due to threatening processes. Justifications and actions needed are listed for threatened (Vulnerable: VU), Near Threatened (NT) and Data Deficient (DD) taxa. Symbol (†) denotes taxa endemic to the study region and therefore the status evaluation is global; for non-endemic taxa, the assessment is at the regional level and applies to the relevant population(s) within the study region.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Geographic range (sq km)</th>
<th>Distribution parameter (and method)</th>
<th>No. of locations</th>
<th>Cons. status</th>
<th>Justification</th>
<th>Actions needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Ogyris iphis doddi</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>VU</td>
<td>Criterion B2ab(iii)</td>
<td>Clarify distribution and habitat, and population structure within critical habitat.</td>
</tr>
<tr>
<td>†Euploea alcathoe enastri</td>
<td>9,103</td>
<td>EOO (minimum convex polygon)</td>
<td>11</td>
<td>NT</td>
<td>Criterion A3c: projected population decline over 10 years based on decline of habitat quality through inappropriate fire regime and disturbance by feral animals.</td>
<td>Monitor extent and/or quality of critical habitat and butterfly occupancy, and manage threats from fire and feral animals.</td>
</tr>
<tr>
<td>†Hypochrysops apelles ssp. 'Top End'</td>
<td>4,325</td>
<td>EOO (minimum convex polygon)</td>
<td>3</td>
<td>NT</td>
<td>Criterion D2: projected loss of locations through decline of habitat from coastal development.</td>
<td>Clarify distribution and monitor butterfly occupancy of critical habitat.</td>
</tr>
<tr>
<td>†Idalma sp. 'Arnhem Land'</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>NT</td>
<td>Criteria A3c, D2: projected loss of locations and/or population decline over 10 years based on decline of larval food plant through inappropriate fire regime.</td>
<td>Monitor abundance of moth and food plant and occupancy of critical habitat.</td>
</tr>
<tr>
<td>Taxon</td>
<td>Geographic range (sq km)</td>
<td>Distribution parameter (and method)</td>
<td>No. of locations</td>
<td>Cons. status</td>
<td>Justification</td>
<td>Actions needed</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>†Hecatesia sp. ‘Arnhem Land’</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>NT</td>
<td>Criteria A3c, D2: projected loss of locations and/or population decline over 10 years based on decline of larval food plant through inappropriate fire regime.</td>
<td>Monitor abundance of moth and food plant and occupancy of critical habitat.</td>
</tr>
<tr>
<td>†Nesolycaena caesia</td>
<td>27,900</td>
<td>EOO (minimum convex polygon)</td>
<td>5</td>
<td>DD</td>
<td>Uncertain threats: possible decline of larval food plant and/or butterfly through inappropriate fire regime.</td>
<td>Monitor abundance of butterfly and food plant and occupancy of critical habitat in relation to fire regimes.</td>
</tr>
<tr>
<td>†Hesperilla crypsgramma ssp. ‘Top End’</td>
<td>20,981</td>
<td>EOO (minimum convex polygon)</td>
<td>9</td>
<td>DD</td>
<td>Uncertain threats: possible decline of larval food plant and/or butterfly through inappropriate fire regime.</td>
<td>Monitor abundance of butterfly and food plant and occupancy of critical habitat in relation to fire regimes.</td>
</tr>
<tr>
<td>Ogyris barnardi barnardi</td>
<td>9,095</td>
<td>EOO (minimum convex polygon)</td>
<td>6</td>
<td>DD</td>
<td>Uncertain threats: possible decline of habitat through poor land management.</td>
<td>Monitor extent and/or quality of critical habitat and butterfly occupancy, and identify key threatening processes.</td>
</tr>
<tr>
<td>Petrelaea tombugensis</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>DD</td>
<td>Few records and uncertain distribution; deficient ecological information.</td>
<td>Clarify extent of distribution and determine larval food plant.</td>
</tr>
<tr>
<td>Synemon sp. ‘Kimberley’</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>DD</td>
<td>Few records and uncertain distribution; deficient ecological information.</td>
<td>Clarify extent of distribution, determine critical habitat and larval food plant.</td>
</tr>
<tr>
<td>Mimeusemia econia</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>DD</td>
<td>Few records and uncertain distribution; deficient ecological information.</td>
<td>Clarify extent of distribution, determine critical habitat and larval food plant.</td>
</tr>
<tr>
<td>Agarista agricola agricola</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>DD</td>
<td>Few records and uncertain population status and/or distribution; uncertain threats.</td>
<td>Clarify extent of distribution and identify key threatening processes.</td>
</tr>
<tr>
<td>Badamia exclamationis</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Deficient ecological information and uncertain threats.</td>
<td>Clarify extent of breeding distribution, determine critical habitat and identify key threatening processes.</td>
</tr>
<tr>
<td>†Suniana lascivia lasus</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Few records and uncertain population status and/or distribution; insufficient ecological information; uncertain threats.</td>
<td>Clarify extent of distribution, determine critical habitat and identify key threatening processes.</td>
</tr>
<tr>
<td>Acrodipsas myrmecophilia</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Few records and uncertain population status and/or distribution.</td>
<td>Clarify extent of distribution.</td>
</tr>
<tr>
<td>Taxon</td>
<td>Geographic range (sq km)</td>
<td>Distribution parameter (and method)</td>
<td>No. of locations</td>
<td>Cons. status</td>
<td>Justification</td>
<td>Actions needed</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Acrodipsas decima</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Few records and uncertain population status and/or distribution; insufficient ecological information.</td>
<td>Clarify extent of distribution and determine critical habitat.</td>
</tr>
<tr>
<td>Bindahara phocides</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Uncertain population status and/or distribution; insufficient ecological information.</td>
<td>Determine whether population is established and clarify distribution and larval food plant.</td>
</tr>
<tr>
<td>Theclinesthes alboicinctus</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Uncertain threats.</td>
<td>Clarify extent of distribution and identify key threatening processes.</td>
</tr>
<tr>
<td>Pollaninus sp. 7</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Old record and uncertain population status and/or distribution; deficient ecological information.</td>
<td>Determine whether population is established and clarify distribution and larval food plant.</td>
</tr>
<tr>
<td>Euchromia creusa</td>
<td>c. 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Few records and uncertain distribution; deficient ecological information.</td>
<td>Clarify extent of distribution and determine larval food plant.</td>
</tr>
<tr>
<td>Mimeusemia centralis</td>
<td>< 700</td>
<td>AOO (spatial buffering)</td>
<td>1</td>
<td>DD</td>
<td>Few records and uncertain distribution; deficient ecological information.</td>
<td>Clarify extent of distribution and determine critical habitat and larval food plant.</td>
</tr>
<tr>
<td>Candalides geminus gagadju</td>
<td>39,942</td>
<td>EOO (Arnhem Land Plateau)</td>
<td>7</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borbo impar lavinia</td>
<td>35,356</td>
<td>EOO (modified α-hull)</td>
<td>20</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudosesia oberthun</td>
<td>29,990</td>
<td>EOO (modified α-hull)</td>
<td>6</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasora hurama territorials</td>
<td>28,050</td>
<td>EOO (modified α-hull)</td>
<td>7</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacaduba kurava felsina</td>
<td>25,246</td>
<td>EOO (minimum convex polygon)</td>
<td>10</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jalmenus icilius</td>
<td>22,528</td>
<td>EOO (minimum convex polygon)</td>
<td>3</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appias albina albina</td>
<td>22,372</td>
<td>EOO (modified α-hull)</td>
<td>6</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoma sabina</td>
<td>14,900</td>
<td>EOO (modified α-hull)</td>
<td>13</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agarista agricola biformis</td>
<td>8,860</td>
<td>EOO (minimum convex polygon)</td>
<td>6</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxon</td>
<td>Geographic range (sq km)</td>
<td>Distribution parameter (and method)</td>
<td>No. of locations</td>
<td>Cons. status</td>
<td>Justification</td>
<td>Actions needed</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>†Leptosia nina ssp. ‘Kimberley’</td>
<td>5,925</td>
<td>EOO (modified α-hull)</td>
<td>9</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Taractrocera illia</td>
<td>3,582</td>
<td>EOO (minimum convex polygon)</td>
<td>5</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Protographium leosthenes geimbia</td>
<td>1,697</td>
<td>EOO (minimum convex polygon)</td>
<td>4</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Radinocera sp. ‘Sandstone’</td>
<td>c. 1,400</td>
<td>AOO (spatial buffering)</td>
<td>2</td>
<td>LC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common, I. F. B. 1978. The distinction between *Hypolimnas antilope* (Cramer) and *H. anomala* (Wallace) (Lepidoptera: Nymphalidae), and the occurrence of *H. anomala* in Australia. *Australian Entomological Magazine* 5: 41–44.

Fisher, C. & Calaby, J. 2009. The top of the Top End: John Gilbert’s manuscript notes for John Gould on vertebrates from Port Essington and Cobourg Peninsula (Northern Territory, Australia); with comments on specimens collected during the settlement period 1838 to 1849, and subsequently. *The Beagle, Records of the Museums and Art Galleries of the Northern Territory* Supplement 4: 1–239.

Williams, A. A. E., Williams, M. R. & Swann, G. 2006. Records of butterflies (Lepidoptera) from the Kimberley region of Western Australia. _Victorian Entomologist_ 36: 9–16.

Index

Bold indicates the main entry for the species

Acraea andromacha 34, 38, 43, 44, 196–7, 398, 401
 A. andromacha andromacha 196
Acraea terpsicore 29, 30, 34, 39, 42, 45, 198–9, 398, 401
Acrodipas 25
Acrodipas decima xxi, 29, 30, 33, 35, 38, 44, 45, 240–1, 405
Acrodipas myrmecophila xxi, 30, 38, 41, 44, 45, 238–9, 404
Adaluma urumelia 13
Agarista agricola 29, 38, 380–1, 402
 A. agricola agricola xxi, 29, 30, 35, 44, 45, 380, 381, 404
 A. agricola biformis 29, 34, 35, 39, 45, 380, 381, 405
Agarista leonora 13
Agaristinae 15, 41
Alcides metaurus 30, 40, 45, 348–9
Amata 15
Amethyst Hairstreak 262
Anthene lycaenoides 35, 38, 44, 284–5, 395, 396, 397, 398, 401
 A. lycaenoides godeffroyi 284
Anthene seltuttus 35, 38, 44, 286–7, 395, 398, 401
 A. seltuttus affinis 286
Appias albina 29, 32, 35, 38, 39, 42, 48, 152–3, 154, 398, 401
 A. albina albina 29, 152, 405
 A. albina infuscata 29, 30, 40, 45, 152
Appias paulina 35, 38, 42, 154–5, 400
 A. paulina ega 154
Arctiinae 15
Arhopala eupolis 35, 38, 44, 246–7, 391, 393, 394, 398, 401
 A. eupolis asopus 34, 246
Arhopala micale 35, 38, 44, 248–9, 394, 397, 401
 A. micale ssp. ‘Top End’ 34, 39
Asura 15
Australian Painted Lady 40, 202
Badamia exclamationis 38, 40, 42, 45, 66–7, 394, 404
Belenois java xxvi, 34, 38, 41, 44, 156–7, 393
 B. java teutonia 156
Bindabara phocides 30, 38, 40, 45, 268–9, 393, 405
 B. phocides yurgama 268
Birtheana cleis 35, 342–3, 397
Bitter-bush Blue 304
Black-spotted Flash 264
Black-spotted Grass-blue 316
Black-spotted White 146
Blue Argus 204
Blue Tiger 172
Blue-banded Eggfly 214
Borbo cinnara 40, 45, 92–3, 399
Borbo impar 39, 44, 92, 94–5, 96, 398, 399, 400, 405
 B. impar lavinia 33, 92, 94
Boulder Day-moth 364
Brachodidae 15
Bright Purple Azure 252
Bright-orange Darter 120
Broad-banded Awl 68
Candalides delospila 35, 37, 39, 276–7, 396
Candalides erinus 38, 44, 274–5, 276, 396
 C. erinus erinus 274
Candalides geminus 35, 37, 39, 272–3, 396
 C. geminus gagadju 5, 30, 34, 47, 272, 405
Candalides heathi 389
Candalides margarita 13, 34, 38, 44, 270–1, 397
 C. margarita gilberti 34, 270
Caper Gull 158
Caper White 156
Castniidae 2, 15, 24, 41
Catobryops panormus 34, 44, 308–9, 395, 396
 C. panormus platissa 308
Catopilia pomona 34, 36, 40, 42, 44, 130–1, 395, 396
Catopilia pyranthe 35, 40, 44, 128–9, 396
 C. pyranthe crokera 128
Catopsilia scylla 34, 38, 44, 132–3, 396
C. scylla etesia 132

Catopyrops florinda 34, 38, 44, 296–7, 394, 401
C. florinda estrella 296

Cedar Bush-brown 228
Central Spotted Day-moth 378

Cephalotes 15

Cephalotes augiades 33, 35, 38, 122–3, 124, 393
C. augiades ssp. 'Top End' 30, 39, 122

Cephalotes trichopepla 34, 38, 44, 124–5, 393

Cepora perimale 34, 38, 44, 154, 158–9, 393
C. perimale scyllara 158

Cethosia penthesilea 32, 35, 38, 39, 42, 44, 194–5, 398
C. penthesilea paksha 194

Chaetocneme denitza 35, 72–3, 397

Charaxes sempronius 34, 38, 44, 222–3, 393, 395, 396
C. sempronius sempronius 222

Chequered Swallowtail 60

Chesnut Day-moth 360

Chocolate Argus 208

Chrome Awl 70

Clearwing Moth 328

Clearwing Swallowtail 62

Climena Crow 40, 192

Common Crow 5, 188

Common Grass-blue 314

Comocrus behri 30, 35, 38, 386–7, 397

Copper Jewel 242

Cressida cressida 35, 44, 62–3, 393

C. cressida cressida 62

Crow Eggfly 40, 220

Cruria darwiniensis 33, 35, 39, 384–5, 392
C. darwiniensis darwiniensis 384
C. darwiniensis platycantha 384

Cruria donovani 42, 382–3, 384, 401

Crimine sp. 'Top End' 32, 33, 35, 38, 40, 48, 344–5

Dainty Grass-blue 318

Dainty Swallowtail 54

Danaid Eggfly 218

Danais darchia 12

Danaius affinis 34, 39, 44, 180–1, 392
D. affinis affinis 180

Danais chrysippus 40, 174–5, 392
D. chrysippus cratippus 29, 30, 40, 45, 174

Danais genutia 32, 35, 39, 178–9, 182, 392
D. genutia alexis 33, 178

Danais petilia xiv, 34, 176–7, 180, 392

Danais plexippus 30, 40, 45, 182–3

Dark Ciliate-blue 286

Dark Grass-dart 116

Delias aestiva 21, 35, 39, 42, 44, 160–1, 394
D. aestiva aestiva 33, 160
D. aestiva smitheri 160

Delias argenbona 21, 34, 44, 160, 164–5, 386, 397
D. argenbona argenbona 164
D. argenbona fragalactea 33, 164

Delias myis 160, 162
D. myis myis 40, 45, 162

Deudorix diovis 19

Deudorix smilis 14, 32, 35, 38, 39, 41, 44, 48, 266–7, 397
D. smilis dalyensis 14, 34, 39, 266

Dingy Bush-brown 226

Dodd's Azure 256

Dusky Knight 232

Dysania numana 35, 38, 44, 346–7, 400

Elodina padusa 35, 38, 44, 148–9, 393

Elodina perditia 24

Elodina tongera 24, 150

Elodina walkeri 24, 35, 38, 44, 150–1, 393

Erebididae 15, 24

Euchromia creusa 30, 38, 40, 45, 350, 405

Euchryopsis cnejus 34, 39, 42, 44, 322–3, 395, 396
E. cnejus cnidus 322

Euploea alcathoe 35, 37, 38, 190–1, 392
E. alcathoe enastri xxxi, 30, 34, 39, 44, 45, 190, 403

Euploea climena 192
E. climena macleari 40, 45, 192

Euploea corinna 5, 34, 38, 42, 188–9, 392, 397

Euploea darchia 12, 35, 38, 44, 186–7, 397
E. darchia darchia 12, 33, 39, 186

Euploea sylvester 34, 38, 44, 184–5, 186, 392
E. sylvester pelor 13, 33, 39, 184
E. sylvester sylvester 184

Eurema alitha 30, 35, 38, 43, 44, 142–3, 144, 395
E. alitha novaguineensis 30, 142

Eurema brigitta 134–5
E. brigitta australis 30, 40, 45, 134

Eurema hecabe 30, 34, 38, 36, 38, 41, 44, 142, 144–5, 398

Eurema herla 34, 42, 44, 136, 138–9, 395

Eurema laeta 34, 40, 42, 44, 134, 136–7, 138, 395
E. laeta sana 136

Eurema smilax 35, 40, 41, 44, 140–1, 396

Evening Brown 224

Everes lactaurnus 35, 38, 40, 42, 44, 320–1, 395
E. lactaurnus australis 320

Famegana alsulus 34, 44, 316–17, 395, 396
F. alsulus alsulus 316

Fiery Jewel 238, 244

Flame Geometer Moth 344

Four-barred Swordtail 50
Galaxy Day-moth 352
Genus 1 sp. ‘Sandstone’ 23, 35, 39, 40, 42, 352–3
Geometridae 15, 24
Glasswing 196
Glistening Line-blue 298
Glyptotergitidae 15
Golden-flash Sun-moth 334
Gove Crow 190
Graceful Day-moth 382
Graphium euryalus 35, 38, 42, 52–3, 154, 392, 394, 396
G. euryalus nyctimus 33, 38, 52
Green Grass-dart 110
Hasiona chromus 38, 41, 42, 70–1, 395
H. chromus chromus 70
Hasiona hurama 35, 39, 41, 68–9, 70, 395
H. hurama territorialis 33, 68, 405
Hecateia sp. ‘Amata’ 13, 31, 35, 39, 376–7, 396
Hecateia sp. ‘Arnhem Land’ xxxi, 29, 30, 33, 35, 39, 44, 45, 47, 374–5, 396, 404
Heliocelidae 15
Hesperiidae xxx, 14, 24, 32, 40, 41
Hesperilla crypsigamma 35, 39, 44, 82–3, 394
H. crypsigamma ssp. ‘Top End’ xxxi, 30, 33, 44, 45, 82, 404
Hesperilla sexguttata x, 34, 39, 82, 84–5, 394
Hestia choroida saethocoma 38, 40, 340–1
Hypochromys 25
Hypochromyops apelles 34, 35, 39, 45, 242–3, 394, 400
H. apelles ssp. ‘Arnhem Land’ xxxi, 30, 44, 45, 46, 242, 403
Hypochromyops ignitus 44, 238, 244–5, 393, 395, 396, 397, 398, 400, 401
H. ignitus erythrina 34, 244
Hypocysta adiante 35, 38, 230–1, 398, 399, 400
H. adiante antirius 34, 230
Hyperlimnas alimenia 35, 38, 44, 214–15, 391
H. alimenia darwinensis 34, 39, 214
Hyperlimnas anomala x, 220–1
H. anomala albula 40, 45, 220
Hyperlimnas bolina 34, 39, 40, 44, 216–17, 391, 393, 397
H. bolina nerina 216
Hyperlimnas missippus 39, 44, 218–19, 400
Hypochoeris phorbas 25, 35, 36, 38, 264–5, 396, 397, 398, 401
H. phorbas ingura 264
H. phorbas phorbas 264
Idalima sp. ‘Arnhem Land’ xxxi, 29, 30, 33, 35, 39, 44, 45, 47, 372–3, 394, 403
Idalima 42
Idalima aethrius 35, 37, 370–1, 394
Idalima leonora 13, 33, 35, 368–9, 394
I. leonora leonora 368
I. leonora tasso 368
Idalima metaesticta 33, 35, 366–7, 394
Immidae 15
Indigo Day-moth 368
Ipanica cornigera 15, 38, 40, 42, 356–7
Jamides icilius 30, 35, 45, 262–3, 395, 396, 405
Jamides phaseli 34, 38, 44, 306–7, 395, 396
Jewelled Grass-blue 324
Junonia erigone 29, 30, 40, 45, 210
J. erigone walkerii 210
Junonia bedonia 34, 36, 39, 44, 208–9, 391
J. bedonia zelina 208
Junonia orithya 34, 44, 204–5, 206, 391, 398
J. orithya albicipitata 204
Junonia villida 34, 40, 44, 204, 206–7, 391, 394
J. villida villida 206
Kakadu Swordtail 19, 50
Kakadu Whistling Moth 374
Kimberley Opal 282
Kimberley Sun-moth 332
Laced Day-moth 356
Lampides boeticus 34, 39, 40, 42, 44, 310–11, 395
Large Grass-yellow 144
Large Yellow Grass-dart 98
Lemon Migrant 130
Leptosia nina 32, 35, 37, 38, 39, 45, 48, 146–7, 393
L. nina ssp. ‘Kimberley’ 29, 30, 32, 33, 39, 146, 406
L. nina comma 146
L. nina fumigata 146
Leptotes plinius 19
Lesser Wanderer 176
Leucophaea cosmolis 15, 38, 40, 354–5
Libythea geoffroyi 35, 38, 44, 168, 170–1, 393
L. geoffroyi genis 33, 39, 168
Lined Grass-yellow 136
Liphyra brasilis 13, 25, 35, 44, 236–7
L. brasilis major 236
Long-tailed Pea-blue 310
Lurcher 212
Lycaenidae xxx, 24, 25, 26, 32, 41
Lyell’s Swift 96
Macleay’s Grass-yellow 138
Macroglossum 15
Mangrove Jezebel 160
Mauve Line-blue 288
Meadow Argus 206
Melanitis leda 34, 38, 42, 44, 224–5, 398, 399
M. leda bankia 224
Mesolina gracillima 33, 35, 37, 39, 88–9, 396
Mimetic Whistling Moth 376
Mimeusemia 15
Mimeusemia centralis 30, 38, 40, 45, 378, 405
Mimeusemia ecenia 30, 35, 38, 40, 45, 379, 404
Mistletoe Day-moth 386
Monarch 40, 182
Moth Butterfly 236
Mycalesis perseus 35, 36, 40, 42, 44, 226–7, 399, 400
M. perseus perseus 226
Mycalesis sirius 24
Mydosama sirius 35, 36, 39, 44, 228–9, 399
M. sirius sirius 228
Nacaduba biocellata 34, 40, 42, 43, 44, 292–3, 395
N. biocellata biocellata 292
N. kurava felsina xxxi, 34, 39, 45, 290, 405
N. kurava 35, 38, 290–1, 400
Nacaduba biocellata 34, 40, 42, 43, 44, 292–3, 395
N. biocellata biocellata 292
N. kurava felsina xxxi, 34, 39, 45, 290, 405
Narrow-brand Grass-dart 108
Narrow-brand Grass-skipper 78
Narrow-winged Awl 66
Narrow-winged Pearl-white 148
Neohesperilla crocea 35, 38, 40, 78–9, 398, 399
Neohesperilla senta 40, 74–5, 398, 400
Neohesperilla xanthomera 40, 80–1
Neohesperilla xiphiphora xii, 35, 42, 76–7, 399
Nesolycaena caesia xvi, xxxi, 29, 30, 32, 33, 35, 39, 42, 44, 45, 278, 282–3, 400, 401, 404
Nesolycaena urumelia 13, 33, 35, 39, 42, 44, 278, 280–1, 282, 400, 401
No-brand Crow 190
No-brand Grass-dart 100
No-brand Grass-yellow 40, 134
Noctuidae 15, 24, 42
Northern Ant-blue 240
Northern Argus 40, 210
Northern Forester Moth 338
Northern Iris-skiper 88
Northern Pencil-blue 270
Northern Purple Azure 260
Northern White-spotted Sun-moth 330
Nymphalidae xxx, 32, 40, 42
Ocybadistes flavovittatus 34, 44, 108–9, 110, 398
O. flavovittatus vesta 33, 108
Ocybadistes hypomeloma 40, 112–13, 399, 400
O. hypomeloma vaga 33, 112
Ocybadistes walker 35, 40, 44, 110–11, 114, 398, 399
O. walker olivia 33, 110
Ogyris amaryllis 13, 34, 43, 250, 254–5, 397
O. amaryllis meridionalis 254
Ogyris barnardi 35, 37, 41, 252–3, 397
O. barnardi barnardi xxxi, 30, 44, 45, 252, 404
Ogyris iphis 35, 256, 258–9, 397
O. iphis doddi xxxi, 13, 29, 34, 44, 45, 46, 256, 258, 403
Ogyris oroetes 250–1, 254, 256, 397
O. oroetes oroetes xxxi, 45, 250
Ogyris zosine 34, 260–1, 397
O. zosine zosine 260
Orange Lacewing 194
Orange Migrant 132
Orange Palm-dart 122
Orange Ringlet 230
Orange Swift 90
Orange Tiger 178
Orange-tipped Azure 256
Orange-tipped Pea-blue 320
Orchard Swallowtail 56
Ortens augustulus 19
Ornate Dusk-flat 72
Pachliopta liris 19
Painted Day-moth 380
Pale-banded Day-moth 354
Pale Ciliate-blue 284
Pale Pea-blue 308
Pale Triangle 52
Pale-orange Darter 118
Papilio aegeus 35, 38, 56–7, 400, 401
P. aegeus aegeus 56
Papilio anactus 30, 45, 54, 400
Papilio canopus 13
Papilio demoleus 34, 39, 41, 44, 60–1, 395
P. demoleus sthenelus 60
Papilio fuscus 13, 35, 38, 42, 58–9, 400, 401
P. fuscus canopus 13, 33, 38–9, 58
Papilionidae xxx, 19, 32, 49–
Parnara amalda 35, 39, 40, 44, 90–1, 96, 399
Pearl Day-moth 362
Pelopidae aqua 19, 96
Pelopidas lyelli 34, 38, 44, 92, 96–7, 398, 399
P. lyelli lyelli 96
Periopa anadens 15, 23, 358, 360–1, 401
Periopa diversa 39, 358–9, 400
Petrelata tambunensis xxxi, 30, 35, 38, 40, 45, 288–9, 394, 404
Phalantha phalantha 32, 35, 38, 39, 42, 48, 200–1, 401
P. phalantha araca 34, 39, 200
Pieridae xxx, 24, 32, 40
Pipeclay Pearl-white 24
Plain Tiger 40, 174
Pollanisus sp. 7 xxxi, 33, 38, 40, 44, 45, 77, 338, 401, 405
INDEX

429

Pollalisus eumetopus 338
Princess Flash 266
Proeidosa polysema 39, 42, 86–7, 400
Prosotas dubiosa 35, 38, 294–5, 391, 395, 401
P. dubiosa dubiosa 294
Protographium leathenes 35, 38, 42, 50–1, 392
P. leathenes geimbia 5, 19, 33, 38, 45, 47, 50, 406
Pseudoborbo bevani 19
Pseudosesia oberthuri 33, 38, 328–9, 401, 405
Purple Beak 168
Purple Cerulean 306
Purple Line-blue 294
Purple Oak-blue 246
Radinocera sp. ‘Sandstone’ 29, 30, 33, 35, 39, 45, 47, 364–5, 401, 406
Radinocera 15, 42
Radinocera tagata 38, 43, 362–3, 401
Rayed Blue 389
Red-banded Jezebel 40, 162
Rice Swift 40, 92
River-sand Grass-dart 102
Riverine Sedge-skipper 84
Rock Grass-dart 104
Rock-art Day-moth 372
Rustic Day-moth 379
Sahulana scintillata 35, 38, 40, 41, 44, 298–9, 395, 401
Samphire Blue 300
Sandstone Grass-dart 106
Satin Azure 254
Scalloped Grass-yellow 142
Scarlet Jezebel 164
Scarlet Tiger Moth 350
Sesiaidae 15
Shining Oak-blue 248
Silky Azure 250
Six O’clock Moth 346
Small Ant-blue 238
Small Brown Crow 186
Small Dusky-blue 274
Small Grass-yellow 140
Small Pearl-white 150
Speckled Day-moth 366
Speckled Line-blue 296
Sphingidae 15
Spinifex Sand-skipper 86
Splendid Day-moth 370
Spotted Dusky-blue 276
Spotted Grass-blue 312
Spotted Grass-skipper 74
Spotted Opal 278
Spotted Pea-blue 322
Spotted Rustic 200
Suniana larrakia 13
Suniana lascivia 29, 39, 114, 116–17, 399
S. lascivia larrakia 5, 13, 29, 33, 116
S. lascivia lasus xxxi, 29, 31, 33, 44, 45, 116, 404
Suniana sunias 38, 40, 114–15, 399
S. sunias sauda 33, 39, 114
Swamp Tiger 180
Sword-brand Grass-skipper 76
Sword-tail Flash 268
Syenemon sp. ‘Kimberley’ 30, 19, 35, 332–3, 398, 404
Syenemon sp. ‘Roper River’ xxxi, 33, 35, 45, 336–7, 398
Synemon phaeoptila 16, 42, 330–1, 332, 334, 398
Synemon walvudam 5, 13, 35, 41, 44, 330, 334–5, 336, 398, 400
Tailed Emperor 222
Taractrocera anisomorpha 44, 98–9, 100, 399
Taractrocera dolon xxiv, 35, 40, 44, 102–3
T. dolon diomedes 35, 102
Taractrocera ilia 21, 33, 35, 39, 41, 42, 45, 47, 104–5, 106, 399, 406
Taractrocera ina 38, 42, 43, 98, 100–1, 398, 399
Taractrocera psammopetra 29, 30, 33, 35, 36, 47, 106–7, 399
Tawny Coster 198
Telicota ancilla 19
T. ancilla baudina 19, 120
Telicota augias 35, 36, 38, 42, 43, 120–1, 396
T. augias krefftii 19, 120
Telicota colon 34, 38, 44, 118–19, 398, 399
T. colon argea 118
Telicota mesopis 19
Theclinesthes albocinctus xxxi, 30, 41, 44, 45, 304–5, 394, 405
Theclinesthes miskini 34, 39, 302–3, 395, 396, 398, 401
T. miskini miskini 302
Theclinesthes onycha 19
Theclinesthes serpentatus 19, 300
Theclinesthes sulphus xxxi, 30, 35, 37, 39, 45, 300–1, 391
Tiger Day-moth 384
Tirumala hamata 34, 38, 44, 172–3, 392
Trident Pencil-blue 270
Twin Dusky-blue 272
Two-brand Crow 184
Two-spotted Line-blue 292
Uraniiidae 15, 40
Vanessa itea 40, 45, 203
Vanessa kershawi 30, 40, 45, 202
Varied Eggfly 216
Virachola smilis dalyensis 14
Wattle Blue 302
White Albatross 40, 152
White Migrant 128
White-banded Line-blue 290
White-margined Grass-dart 112
White-veined Sun-moth 336
Wide-brand Grass-dart 114
Wide-brand Sedge-skipper 82

Yellow Admiral 40, 203
Yellow Albatross 154
Yellow Forester Moth 340
Yellow Grass-skipper 80
Yellow Palm-dart 124
Yellow Swift 94
Yoma sabina 35, 38, 42, 45, 212–13, 391, 405
 Y. sabina parva 212
 Y. sabina sabina 30, 212
Ypthima arctous 34, 38, 40, 44, 232–3, 398, 399, 400
 Y. arctous arctous 232

Zizeeria karsandra 34, 39, 41, 44, 312–13, 397, 402
Zizina otis 34, 40, 44, 314–15, 395
 Z. otis labradus 314
Zizula hylax 34, 39, 40, 42, 44, 318–19, 391
 Z. hylax attenuata 30, 318
Zodiac Moth 40, 348
Zygaenidae 15, 24